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Abstract. Calculations of dynamic processes in the elements of thermal power plants (TPP) (heat 

exchangers, combustion chambers, turbomachines, etc.) are necessary to justify permissible and optimal 

operating modes, the choice of design characteristics elements, assessing their reliability, etc. Such tasks are 

reduced to solving partial differential equations. At present time for such calculations are mainly used finite-

difference method and finite element method. These methods are cumbersome and complex. The article 

proposes a method, the main idea of which is to reduce the solution of equations to solving linear 

programming problems (LP) is demonstrated by the example heat exchanger of periodic action. The 

mathematical description includes the following energy balance equations for gas and ceramics, 

respectively, on the plane, where - indicates the length of the heat exchanger, and - the operating time. Also 

provides a more complex model, taking into account the spread of heat inside the balls of the ceramic 

backfill.  

1 Introduction  

Calculations of stationary and non-stationary modes of 

operation of a number of elements of thermal power 

plants (heat exchangers of various types, furnaces, 

combustion chambers, turbine grids, etc.) are reduced to 

solving systems of partial differential equations (PDE). 

The main methods for solving such systems are finite 

difference methods (FDM), finite volume methods 

(FVM) and finite element methods (FEM).  

When using FDM, a grid is constructed on the 

computational domain and for each of its nodes, based 

on the initial differential equations, a subsystem of 

algebraic equations is formed [1–4]. In these equations, 

the partial derivatives are replaced by the corresponding 

finite differences. Subsystems of algebraic equations of 

individual grid nodes are combined into a single system 

of algebraic equations, to which boundary conditions are 

added. It should be noted that, in this case, the accuracy 

of solving the system of PDE strongly depends on the 

values of the grid steps in spatial coordinates and in 

time. The desire to increase the accuracy of the solution 

leads to a reduction in the size of steps and, accordingly, 

to an increase in the number of grid nodes and the 

dimension of the system of algebraic equations. In many 

cases, this dimension becomes so large that the system 

cannot be solved as a whole without using one or another 

decomposition method. Reducing the dimension of the 

system can be achieved by using a grid with variable 

steps, but this greatly complicates the algorithm for 

solving the problem, which is especially noticeable for a 

computational space with complex geometry. 

FVM is applicable to problems in which differential 

equations reflect the laws of conservation of mass (total 

or individual chemical elements), energy and momentum 

[5, 6]. Most of the problems of heat and mass transfer 

belong to such tasks. Therefore, this method is most 

widely used in computational fluid dynamics. In 

accordance with FVM, the computational area is divided 

into control volumes for which an irregular geometric 

shape is permissible. For each volume, balance equations 

are formed that take into account the exchange of a given 

volume with adjacent volumes of mass, energy and 

momentum. These equations are algebraic, in which the 

derivatives are replaced by finite differences determined 

from the values of the corresponding parameters at the 

geometric centers of adjacent control volumes. In 

addition, the equations include the areas of the boundary 

surfaces between adjacent control volumes. Moreover, 

the balances of mass, energy and momentum are 

observed for the control volumes, regardless of the 

location of the surfaces dividing adjacent volumes. FDM 

allow more accurate and simpler than FVM to represent 

a complex computational domain. 

The disadvantages of both FDM and FVM include the 

impossibility of calculating the sought variables at points 

that are not grid nodes or centers of control volumes. 

FEM were originally intended for static calculations of 

building structures [7–9]. They are based on dividing the 

computational domain into a sufficiently large number of 

finite elements of simple shape, as a rule, polyhedra. 

Nodes are highlighted on each element. First of all, these 

are the vertices of polyhedra; however, it is possible to 

choose other points as nodes. For each element, for all 

functions sought from the system of differential 
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equations, linear combinations of predetermined basis 

functions are sought, connecting the spatial coordinates 

and time with the corresponding sought variable. The set 

of such combinations for all elements must meet the 

following conditions: the minimum of the sum of the 

squared residuals for all nodes of all finite elements is 

achieved (the residuals are obtained by substituting the 

required derivatives of the corresponding linear 

combinations of basis functions in the differential 

equations); equality of the sought variables at the 

vertices of adjacent elements when determining them 

from linear combinations of the basis functions of these 

elements; equality of the calculated boundary conditions 

when determining them on the basis of the 

corresponding linear combinations of basis functions to 

the given boundary conditions. It should be noted that 

with a coordinated selection of the number of finite 

elements, the number of nodes in the elements and the 

number of basis functions, it is possible to achieve that 

the residuals at the nodes of elements, subject to the 

specified conditions, will be equal to zero. These 

conditions generate a system of algebraic equations, the 

solution of which gives linear combinations of basis 

functions that allow one to determine the desired 

variables at any point in the computational domain, 

which is an undoubted advantage of the FEM. It should 

be noted that if the initial system of PDE is linear, then 

the systems of algebraic equations to which the 

approximate solution of the system of PDE is reduced 

will be linear. 

When solving non-stationary problems using FDM, 

FVM, and FEM, the resulting systems of algebraic 

equations become extremely large and decomposition 

methods are used to solve them, which usually consist in 

dividing the solution in spatial coordinates and in time. 

A subsystem of equations related to one moment in time 

is distinguished. After solving it, the partial derivatives 

of the required quantities with respect to time are found. 

Using these derivatives, the values of the corresponding 

quantities are determined at the next time instant (at the 

next time layer). In this case, various explicit and 

implicit difference schemes are used [10]. 

In all the considered methods, the condition for a small 

deviation of the approximate solution of system of PDE 

from its exact solution is the smallness of the values of 

the characteristic geometric dimensions (grid steps, 

maximum dimensions of control volumes and finite 

elements). The most reasonable numerical criterion for 

such a deviation (the quality of an approximate solution) 

is the value of the residual maximum in absolute value at 

all considered (control) points of the computational 

domain; however, none of the considered methods uses 

this criterion. 

Taking into account the indicated FDM, FVM and FEM 

defects, a more effective method for solving the system 

of PDE is proposed. It is based on the search for such 

values of the coefficients of linear expansions of the 

basis functions, which represent the dependences of the 

functions sought from the system of PDE on the spatial 

coordinates and time, at which the residual maximum in 

absolute value reaches the minimum value, determined 

among all residuals at the given control points of the 

computational domain. The transition from minimizing 

the sum of the squared residuals to minimizing the 

maximal residual in absolute value significantly 

improves the quality of the approximate solution and 

allows one to go from small finite elements to 

sufficiently large blocks, within each of which their own 

linear expansions of basis functions are sought. The 

method is based on the assignment within the 

computational domain of control points, at each of which 

residuals are determined. 

All control points of the computational domain are 

divided into three groups. The first group is the internal 

checkpoints of the blocks. At these points, only the 

residuals of the original differential equations are 

calculated, which are obtained after substituting the 

desired functions and their partial derivatives in them, 

determined from linear expansions of the basis functions. 

The second group is the points lying on the boundaries 

of the blocks. At these points, the residuals of the 

differential equations are calculated for each adjacent 

block using its linear expansions. In addition, 

discrepancies between the sought-for values, as well as 

those partial derivatives that are included in the 

differential equations, calculated using linear expansions 

of adjacent blocks, are determined. The third group 

includes control points that lie on the boundaries of the 

computational domain. At these points, the composition 

of the residuals is supplemented by residuals that 

determine the accuracy of the approximation of the 

obtained solution to the initial and boundary conditions. 

In particular, discrepancies between the specified values 

of quantities at the boundaries of the computational 

domain and the values of these quantities calculated 

from linear combinations of basis functions are 

determined. 

If the computational domain is divided into subdomains, 

each of which is described by its own system of 

differential equations, then the indicated subdomains are 

divided into blocks. At the points lying on the 

boundaries of adjacent subdomains, discrepancies 

between the values of those sought-for functions that are 

included in the systems of differential equations of both 

subdomains are determined. 

It should be noted that when minimizing the residual 

maximum in absolute value, it is necessary to compare 

residuals having different dimensions and different 

physical meanings. Therefore, it is advisable to make 

such a comparison between the relative residuals 

obtained by dividing the absolute residuals by their 

maximum allowable values. 

If the initial system of PDE is linear, then the proposed 

method, which can be called the method of control 

points, is reduced to solving a linear programming 

problem[11–12]. 

2 Mathematical problem statement 

There are N  independent parameters Nxx ,...,1 . In the 

space of these parameters, the computational domain Q  

is specified. This domain is divided into L  subdomains

NQQ ,...,1 . Points lying on the boundary between two 
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adjacent subdomains iQ  and jQ  belong to both 

subdomains. We denote the set of such boundary points 

by ij . Each subdomain ( lQ ) has its own subsystem of 

differential equations, which includes lK  equations and 

lK  required functions of independent parameters of the 

form ),...,(),...,,...,( 1111 N
l
K

l
KN

ll xxyyxxyy
ll

 . 

It should be noted that the k -th differential equation of 

the l -th subsystem of differential equations klD  in the 

general case includes not all lK  of the sought functions, 

not all NKl   first derivatives of the sought-for functions 

with respect to independent parameters, not all 

2

2 NN
Kl


 second derivatives of the necessary functions 

with respect to independent parameters, and etc. For the 

k -th equation of the l -th subsystem, we introduce the 

set  klI0  of all numbers of functions included in the k -th 

equation. We denote the number of elements of this set 

by klN0 . Obviously, l
kl KN  00 . If 00 klN , then klI0

∅, that is, the required functions are not included in the 

k -th equation of the l -th subsystem. The element s  of 

this set kl
si0  is equal to the number of the s -th in the 

order of the required function included in the k -th 

equation. 

Similarly, we introduce the set klI1  of all first derivatives 

included in the k -th equation of the l -th subsystem. 

The element s  of this set includes two numbers 

characterizing the s -th first derivative: kl
si1  is the number 

of the sought function that is being differentiated, kl
sj1  is 

the number of the independent parameter by which the 

corresponding derivative is determined. Let's denote by 
klN1  – the number of elements in the set klI1 . Obviously, 

NKN l
kl  10 . If 01 klN , then klI1 ∅. 

Let us introduce the set klI2  characterizing the second 

derivatives included in the k -th equation of the l -th 

subsystem. The element s  of this set includes two 

numbers characterizing the s -th second derivative 

number of the desired function that is being 

differentiated, the numbers of the first and second 

independent parameters by which differentiation is 

carried out ( kl
si2 is the number of the desired function, 

kl
sj2  is the number of the first parameter, kl

sq2  is the 

number of the second parameter ). Let's denote by klN2  – 

the number of elements in the set klI2 . Obviously, 

2
0

2

2

NN
KN l

kl 
 . If 02 klN , then klI2 ∅. 

Similar sets of numbers and indexes in these sets can be 

introduced for derivatives of higher orders. 

Taking into account these definitions, the system of 

differential equations can be written as: 
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.,...,1,,...,1 LllKk   (2) 

The boundary conditions considered in the problems 

under study are as follows. Values of the required 

functions on the boundaries of adjacent subdomains 

must be equal. At each point of the boundary ij  of two 

adjacent subdomains iQ  and jQ , the conditions of 

equality of the values of a part of the sought functions of 

the subdomain iQ  to the corresponding sought functions 

of the subdomain jQ must be satisfied. Let us introduce 

a set of correspondences between the numbers of the 

required functions of the subdomain iQ  and the numbers 

of the required functions of the subdomain jQ . The set 

includes ijS  elements. Obviously, ),min(1 ji
ij KKS  . 

The element p  of this set includes two numbers i
p  and 

j
p , denoting the numbers of the required functions from 

the corresponding subdomains iQ  and jQ . 

Based on this condition, take the form 

),,...,(),...,(
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(3) 

ijNxx  ,...,1  (4) 

These conditions must be satisfied for all T  pairs of 

adjacent subdomains defined by the set 
adjI . For each 

subdomain iQ , a set of external boundaries is 

introduced, on which the values of some functions 
i

ext   

are specified. For each boundary, a set of numbers 

},...,{ 11

i

s

ii

i
jjJ  , where is  is the number of functions 

whose value is given by i

q

ii

i

k KsKj  1},,...,1{ . 

The considered boundary conditions will take the form: 
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.,...,1,,...,1 Lixx ij
extN   (6) 

Superscript z  denotes specified functions of 

independent parameters. 

In a similar way, the values of some partial derivatives 

of the required functions can be specified on the outer 

boundaries of the subdomains. 

We split each subdomain iQ  into iE  blocks iE

ii BB ,...,1
. 

For each block, the required functions of the subdomain 

iQ : ),...,(),...,,...,( 111 N
i
KN

i xxyxxy
i

 will be determined 

using their linear expansion of the basis functions. It is 
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intuitively clear that the geometric shape and size of the 

blocks should be such that, using linear expansions of 

the basis functions, it would be possible to provide an 

acceptable (according to the criteria of maximum 

deviation) approximation of the sought functions within 

one block. 

Let us assign discrete control points 

),...,(),...,,...,( 11
11

1
VV

N xxxx  in the area Q . Points are 

assigned in such a way that among the control points 

there are internal points of each block, points lying on 

the boundaries of adjacent blocks, points lying on the 

boundaries of adjacent subregions and points lying on 

the outer boundaries of subregions. 

For each desired function of each block, the coefficients 

of the linear expansion of the basis functions are set. 

At each control point of the block j
iB  of the subdomain 

iQ , when substituted into the corresponding differential 

equations of linear expansions of the basis functions and 

their derivatives, iK  residuals (absolute) are determined. 

If a point lies on the boundary of two blocks, then the 

iK2  residuals are determined in it using the basis 

functions of two adjacent blocks. In addition, at such a 

point, the boundary conditions of equality of the sought-

for functions determined on the boundaries of adjacent 

blocks and the equality of all those derivatives that 

explicitly enter into the subsystem of differential 

equations in the corresponding subdomains are taken 

into account. If the control point belongs to the set ij , 

i.e. lies on the boundary of the subdomains iQ  and jQ , 

then ji KK  of residuals corresponding to differential 

equations are determined in it, residuals corresponding to 

the boundary conditions of the indicated types are 

determined at some points lying on the boundaries 

between blocks, between subdomains and on the outer 

boundaries of subdomains. As already indicated, the 

residuals depend on the coordinates of the corresponding 

control point and the expansion coefficients of the basis 

functions. 

As shown earlier, the boundary conditions are 

represented as equalities. Each such equality is 

associated with the residual obtained after substituting 

into it linear expansions of the basis functions and 

subtractions from the left side of the equality of the right 

side. Such residuals are determined for all control points 

lying on the boundaries between blocks, between 

subareas and on the outer boundaries of subareas. 

If the systems of differential equations are linear, then 

the residuals will be linear functions of the expansion 

coefficients. In general case: 

,,...,1),( Miaabs
i

abs
i   (7) 

where, abs
i  is the i -th absolute residual, a  is the vector 

of expansion coefficients, M  is the total number of 

residuals in the region Q . 

Let us turn to relative residuals, dividing abs
i  by i , 

where i  is the maximum permissible error of the i -th 

residual. Let Z  denote an auxiliary parameter and assign 

two constraints to each discrepancy: 
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(14) 

where a , a  – vectors defining the boundaries of 

variation of the components of the vector a. The 

objective function of this problem at the point of its 

solution will be equal to the minimum value of the 

maximum relative residual. If it does not exceed 1 , then 

the problem is solved with the required accuracy. 

In this work used, basis functions of the form 

Ni
N

ii
xxx  ...21

21 , ji are exponents meeting the following 

conditions: 

,0 Si j   (15) 

,

1

Si

N

j

j 


 (16) 

The necessary functions are represented as 

,...,...,(

1

11
1





C

k

i
N

i
kN

NKk xxaxxf  (17) 

where 
1 SNC is the number of all possible 

combinations of degrees that meet conditions (15) and 

(16). In fact, we are talking about the representation of 

the required functions by polynomials of degree S  in N  

variables. 

The residuals determined in this problem are functions of 

the expansion coefficients of the sought functions in 

terms of the basis functions ka  and the coordinates of 

the corresponding control points Nxx ,...,1 . 

The total number of residuals in the problem is 

determined by the number of control points, their 

distribution into internal and boundary, subsystems of 

differential equations and boundary conditions. The 

number of parameters to be optimized is also determined 

by the number of blocks and degrees of polynomials, 

with which the sought functions are described. 

It should be noted that using the polynomials found as a 

result of optimization, which approximate the sought 

functions, one can easily calculate in a large number of 

check points that do not coincide with the control points. 

If such a calculation shows unsatisfactory residual 

values, then additional control points can be selected 

from the check points with the maximum residual 

values, which are included in the original problem. 
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If the optimal value of the objective function is greater 

than 1 , i.e. The required accuracy of the solution of the 

problem is not ensured, then the number of blocks into 

which the subdomains of the problem or the degrees of 

polynomials are divided into which the required 

functions are approximated should be increased. 

3 Heat exchanger mathematical model 

As an example, consider the calculation of a periodic 

ceramic heat exchanger [13]. Such a heat exchanger is a 

cylindrical volume filled with a ball backfill. Consisting 

of ceramic balls of the same small radius R . Heating 

gas (products of combustion of ceramic fuel) is 

periodically supplied to the heat exchanger, which heats 

up the ball charge and heated air, which cools the ball 

charge. In this case, the movement of gas and air flows 

occurs along the axis of the cylinder in opposite 

directions. The heat exchanger is intermittent. First, the 

stage of heating the ball charge follows, when gas is 

supplied to the heat exchanger. This is followed by the 

stage of cooling the ball filling, when air is supplied to 

the heat exchanger. 

In the calculation, a simplifying assumption is made, 

which consists in the fact that the heat transfer between 

all balls located in one section perpendicular to the 

cylinder axis proceeds in the same way. 

Let introduce the following notation: ccchgcgh TTTT ,.,  the 

temperature of hot gases, air, ceramics when it is heated, 

ceramics when it cools, respectively. gas  – heat 

transfer coefficient from gas to ceramics, air  – heat 

transfer coefficient from ceramics to air, specF  – specific 

heat transfer area (per cubic meter of filling), airgas  , – 

density of gas and air, respectively. airgas WW ,  – gas and 

air velocities, airgas CC ,  – specific heat capacities of gas 

and air, *F  – open area per unit of backfill area, A  – 

thermal diffusivity of ceramics,   – ceramic thermal 

conductivity. 

At the stage of ceramic heating, the differential equation 

for the heat balance of the gas has the following form: 

 

.0
),(),(
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
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
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x
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 (18) 

Heat transfer between gas and ceramic is described by 

the following differential equation  

  .0
),,(

),,(),( 










rxT
FrxTxT ch

specgaschgh
 (19) 

The differential equation for heat propagation in 

ceramics takes into account the heat propagation inside 

the ceramic ball. Radial heat propagation in a uniform 

ball of radius R  is considered. It is assumed that at any 

time moment t  the temperature at points located at the 

same distance r  from the center of the ball will be the 

same. This means that the temperature in each ball 

depends only on r  and on t . If spherical coordinates are 

introduced for each ball, then the process of heat 

propagation is described by the differential Fourier 

equation [14]. 
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At the stage of ceramic cooling, the differential equation 

for the heat balance of the gas has the following form 
 

.0
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Heat transfer between gas and ceramics during ceramic 

cooling is described by the following differential 

equation. 

  .0
),,(

  ),,(),( 





τ

rτxT
λFαrτxTτxT cc

specairccgc
 (22) 

And for the propagation of heat inside the ceramic 

backfill, the differential Fourier equation will take the 

following form: 

.0
),,(2),,(

 ),,(
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


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
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
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
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rr

rτxT
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cс
 (23) 

The model takes into account the boundary conditions 

(reversibility conditions), requiring that the temperature 

of the ceramics at all control points at the beginning of 

the heating stage be equal to the temperature of the 

ceramics at the corresponding control points of the end 

of the cooling stage and the temperature of the ceramics 

at the control points at the end of the heating stage equal 

to the temperature of the ceramics in the control points at 

the beginning of the cooling stage. 

Since the coefficients are functions of the temperatures 

of gas, air and ceramics calculated as a result of solving 

this problem, the calculation of the heat exchanger is 

carried out iteratively. 

At the first iteration, approximate values are set, after 

which problem (10) – (14) is solved. As a result of the 

solution, we obtain the temperatures. The coefficients 

are refined from the obtained temperatures, after which 

problem (10) – (14) is solved again. The refinement 

process goes on until the temperature difference obtained 

at adjacent iterations is less than a certain specified 

value. 

4 Calculation results 

The calculation of the heat exchanger is carried out with 

the following initial data. The radius of the cylindrical 

heat exchanger 2  m. The height of the heat exchanger 

will be 4  m. The duration of the heating stage and the 

duration of the cooling stage 300  sec.  The radius of the 

backfill ball: 01.0  m. Throughout the entire heating 

stage, the gas temperature at the inlet to the heat 

exchanger is 1800  K. Throughout the entire cooling 

stage, the air temperature is 778  K. Gas and air 

consumption is 74.8  kg/sec and 427.11  kg/sec, 

respectively. 

During the calculations, 2 subdomains were identified 

subregion of the heating stage and the subregion of the 

cooling stage. Each sub-area was divided into 36 blocks 

using time division into 6 equal intervals and the length 

of the heat exchanger into 6 equal intervals. 
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The functions were approximated by 3rd degree 

polynomials. For gas temperatures, a polynomial is in 

two variables (time and length), and the temperature of 

ceramics is in 3 variables (Length, time, and radius). 

There were 10 control points along the radius of the ball. 

The total number of control points at the heating stage 

and at the cooling stage is 45760 for each of the sub-

regions. Total residuals: 91520. The total number of 

constraints in the problem is: 183040. The number of 

parameters to be optimized is: 2161. Each of the 

polynomials included in 36 blocks of the subdomain is 

described by 10 (for gas or air) and 20 (for ceramics) 

parameters. The additional parameter Z is added to the 

total number of parameters. 

Taking into account the need to clarify the coefficients 

included in the differential equations and depending on 

the temperatures of gas, air and ceramics, 3 iterations of 

solving the linear programming problem were carried 

out. Optimal task value: 0.793. 

Calculation of residuals at check points (which were 3 

times more than control points) showed that the 

maximum residual is: 0.832. 

Fig. 1 – Fig. 4 show the calculated values of the 

temperatures of gas, air and ceramics for some points of 

the heat exchanger. 

 

Fig. 1.  Changing in gas temperature at the outlet of the heat 

exchanger at the stage of ceramic heating 

 
Fig. 2 Changing in air temperature at the outlet of the heat 

exchanger at the stage of ceramic cooling. 

 
Fig. 3 Changin of ceramic temperature for three points located 

at different distances from the center of the ball at the stage of 

its heating (at outlet for gas section of the heat exchanger) 

 
Fig. 4 Changin of ceramic temperature for three points located 

at different distances from the center of the ball at the stage of 

its cooling (at outlet for gas section of the heat exchanger) 

 

It should be noted that the problem being solved is very 

difficult for the FDM, FVM and FEM methods. It is 

solved as follows. The temperature of the ceramic at the 

initial heating stage is set. Then, the processes of heating 

and cooling the ceramics are simulated many times until 

the temperature at the beginning of the heating stage 

stabilizes. 

For ceramic values of thermal diffusivity coefficients, 

the considered system of differential equations is “rigid”. 

This requires the specification of small characteristic 

sizes in spatial coordinates and in time, which leads to a 

significant consumption of computing resources. 

The use of this approach significantly reduces the 

resources required to solve the problem. 

5 Conclusions 

The analysis of existing methods for solving systems of 

partial differential equations, including their advantages 

and disadvantages. 

Based on the analysis of disadvantages of the existing 

methods, an effective numerical method for solving 

these problems (the method of control points) is 

proposed. Method is based on reducing the solution of 

systems of PDE to solving linear programming 

problems. 
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The method is illustrated by calculation periodic heat 

exchanger with spherical filling. 
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