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Abstract. The accident rate of 500 kV overhead lines (OHL) of a large region on a long time interval is 

researched. Significant fluctuations in the values of their failure rate (failure frequency) are revealed. The 

specified parameter was analyzed using the mathematical apparatus of the theory of deterministic (dynamic) 

chaos. The fractality of the time series of the OHL failure rate was revealed, as well as the positiveness of 

its maximal Lyapunov exponent, which indicated the chaotic nature of the dynamic process under 

consideration. The insignificant (less than five years) depth of forecasting the reliability characteristics of 

overhead lines due to the indicated chaotic state is substantiated. This is an unfavorable factor that reduces 

the reliability of the reliability estimates of the main grid of power systems. 

1 Introduction  

In [1], the cyclicity of accident rate of 500 kV OHL 

in a large region over an extended time interval was 

researched. Significant fluctuations in the values of their 

failure rate (failure frequency) were revealed under the 

influence of natural and socio-economic factors (Fig. 1); 

it is proposed to consider the specified parameter as the 

output signal of a dynamic system with many difficult to 

formalize inputs. 

It is catching the attention that the graph in Fig. 1 (in 

fact - a time series) is not ordered, regular. In such 

conditions, the problem of predictability of accident rate 

in the main grids of power systems is of interest. For 

example, in [2], such variability in the failure frequency 

of a 500 kV overhead line was described by a 

mathematical model containing a linear trend and a set 

of harmonic components determined using the Fourier 

transform. 

It was noted that it reflects the trend of changes in the 

accident rate of OHL (including taking into account the 

cycles of solar activity) with an accuracy acceptable for 

predictive estimates, and the random component can be 

represented in the form of Gaussian white noise. 

However, the wavelet spectrum of the graph in Fig. 1 

revealed [1] the presence in the frequency spectrum of 

the failure rate of three distinguishable time periods with 

sharply not uniform reliability реcharacteristics. 

Therefore, the use of these harmonic components seems 

to be justified within the framework of a separately 

taken, limited time period, i.e. without taking into 

account the previous historical "tails" of data.  

 
Fig. 1. Failure rate values of 500 kV OHL for the period 

1974–2018. (reported data) with overlapping solar cycles 

(dotted line) 

 

Therefore, to solve the problem of predicting the 

accident rate of overhead lines, the authors of this paper 

have involved the theory of deterministic (dynamic) 

chaos, which is presumably more appropriate in this case 

(see the review in [3, 4]). In the first approximation, the 

presence of fractality (or, as they say, the phenomenon-

companion of chaos) and the positivity of the maximal 

Lyapunov exponent (a sign of instability of a dynamical 

system) are used as criteria for the chaotic behavior of 

the dynamical system under consideration. 

2 Fractal dimension calculation 

As is well known, the statistical characteristic of 

chaos is the dimension of a strange attractor, which 

differs from the usual dimension of a point, line, plane, 

volume, ... (dimensions, respectively, zero, one, two, 

three, ...). Strange attractors have a fractal structure, and, 

accordingly, their dimension is fractional. 

To determine the fractal dimension D, one of the 

most suitable for such (Fig. 1) time series was used the 
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Higuchi method [5, 6]. The algorithm for calculating D 

of the failure rate ω as a time series containing N 

elements includes the following steps [7]: 

1. Creation of new time series. From the given series ω, 

new time series ω𝑘
𝑚

 are created, defined as follows: 

ω𝑘
𝑚: ω(𝑚),ω(𝑚 + 𝑘), ω(𝑚 + 2𝑘),… ,ω (𝑚 +

⌊
𝑁−𝑚

𝑘
⌋ 𝑘) ,𝑚 = 1, 2, … , 𝑘,  

where k and m are integers, m - the initial time, k - the 

time interval, ⌊∙⌋ - the operation of taking the whole 

fraction downward, for example [2,7]=2, [2,3]=2, 

[2,01]=2, etc. 

For a time interval equal to k, k sets of new time 

series are obtained. So for k = 3 and k = 45 (i.e. 45 years 

as in Fig. 1), the three time series obtained in this way 

have the following representation: 

ω3
1: ω(1),ω(4), ω(7), … , ω(43); 

ω3
2: ω(2),ω(5), ω(8), … , ω(44); 

ω3
3: ω(3),ω(6), ω(9), … , ω(45). 

2. Calculation of the length of each new series. The 

length of the curve ω𝑘
𝑚

, denoted as 𝐿𝑚(𝑘), is defined 

as follows: 

𝐿𝑚(𝑘) =

{
 

 

∑ [ω(𝑚 + 𝑖𝑘)

⌊
𝑁−𝑚
𝑘

⌋

𝑖=1

− ω(𝑚 + (𝑖 − 1)𝑘)]

∙
𝑁 − 1

⌊
𝑁 −𝑚
𝑘

⌋ 𝑘
}
 

 

 

where the fraction 
𝑁−1

⌊(
𝑁−𝑚

𝑘
)𝑘⌋

 is the normalization factor 

for the length of the curve of the set of time series. The 

averaging 〈𝐿𝑚(𝑘)〉 is performed over all m from 1 to k. 

3. Construction of the graph 〈𝐿𝑚(𝑘)〉 = 𝑓(𝑘). 
The graph of the function of the average length of the 

curve 〈𝐿𝑚(𝑘)〉 is plotted as a function of k on a double 

logarithmic scale. 

4. Determination of the fractal dimension D as the 

modulus of the tangent of the slope of the graph 

〈𝐿𝑚(𝑘)〉 = 𝑓(𝑘) (it is assumed that the relation 

〈𝐿𝑚(𝑘)〉 ≈ 𝑘
−𝐷 is fulfilled and on this basis the 

dimension D is estimated). 

Fig. 2 shows the dependence of the values of the 

fractal dimension of the time series of the failure rate of 

the 500 kV OHL from 1974 to 2018 years.  𝐷1974−2018 

from k, calculated according to items 1-4. As seen from 

Fig. 2, except for 𝑘 = 3, all other values of the time 

interval give a fractal dimension less than 2. More 

precisely, the averaged value for all k gives 

〈 𝐷1974−2018〉 =1,8926. Thus, from the standpoint of 

Euclidean geometry, we have a figure in its dimension, 

located between the line and the plane, but closer to the 

plane. Consequently, the fractality of the time series in 

Fig. 1 is indeed the case. 

3 Calculation of the maximal Lyapunov 
exponent 

To determine the characteristic exponent of the time 

series in Fig. 1 - the maximal exponent (first exponent) 

of Lyapunov  - the Wolf method was chosen [8]. The  

exponent was calculated as follows. For the time series 

x, a phase portrait was formed in the n-dimensional 

space of some dynamical system, in which any point of 

the series is expressed by a sequence of numbers 

{ω(𝑡0),ω(𝑡0 + τ),… ,ω(𝑡0 + (𝑛 − 1)τ)} 

where τ and n are respectively the selected delay time 

and dimension of the state space of the dynamical 

system (embedding dimension) 

 

Fig. 2. 𝐷1974−2018 of the 500 kV OHL failure rate 

depending on the time interval k 

 

Next, the nearest neighboring point to the starting 

point was determined and the distance between these two 

points 𝑑(𝑡0) was calculated. At the next moment in 

time, i.e. after a given evolution time 𝑡0, the distance 

between these two points became equal to 𝑑′(𝑡1). Then 

a new point was found that satisfies the following 

conditions: its distance from the displaced starting point 

is small in relation to the norm of the time series 

considered as a vector (approximately 5–7%); the angle 

θ, formed by the displaced start point following the 

sequence point (point at time t1) and the selected point, is 

small enough (in this case, not exceeding 1–5 degrees). 

Then everything was repeated for the next point in the 

sequence. 

The maximal Lyapunov exponent was calculated by 

the formula 

 =
1

𝑡𝑁 − 𝑡0
∑ log2 (

𝑑′(𝑡𝑘)

𝑑(𝑡𝑘−1)
)

𝑀

𝑘=1
 

where M is the number of the last iteration of calculating 

the distance between displaced points d’. 

There is an opinion about the difficulties of applying 

the Wolf method: the need to set the parameters of the 

method, namely, the delay time and the embedding 

dimension. However, effective algorithms have been 

developed to overcome these difficulties. One of these 

algorithms is based on a matrix procedure borrowed 
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from symplectic geometry [9]. It consists in "packing" 

the time series into a matrix of the following form: 

𝑾 = [

ω1 ω2 …
ω2 ω3 …
⋮ ⋮ ⋮

ω𝑠 ω𝑠+1 …

ω𝑟
ω𝑟+1
⋮
ω𝐿

] 

followed by varying the values of s, r, L and 

calculating the parameters of the Wolf method based on 

the eigenvalues and vectors of the Hamiltonian matrix of 

the form diag(W –WT) [10, 11]. 

The performed computational experiments with the 

failure rate shown in Fig. 1 (reported data), showed that 

the optimal embedding dimension is n = 2. In this case, 

the maximal Lyapunov exponent takes the value               

1974-2018 = 0,2183>0. Its positive value indicates the 

unstable and chaotic nature of the analyzed time series, 

considered as an output parameter of a complex 

nonlinear dynamic system. 

4 Estimation of the predictive depth of 
the accident rate of 500 kV OHL 

Chaotic systems represent a class of uncertainty 

models that differ in their properties from stochastic 

models. If in a deterministic model the future trajectory 

can be predicted for an arbitrarily long time ahead, and 

in a stochastic model an accurate forecast, generally 

speaking, is impossible even for an arbitrarily small time 

interval, then in a chaotic model the predictive error 

grows exponentially and, therefore, a forecast for a 

limited time ahead [3, 4]. 

As known, the Lyapunov exponent characterizes the 

exponential rate of divergence of close trajectories on the 

attractor. If at the initial moment of time the distance 

between the exponents is ε0, then, after some time Δt, 

the distance between them will be equal to ε1. In this 

case, obviously, ε1=ε0𝑒
λΔ𝑡, whence λ =

1

Δ𝑡
ln

1

ε0
. Let 

us assume that ε1=eε0 (the distance between the 

exponents has increased e times relative to the initial 

one), therefore, λ =
1

Δ𝑡
ln𝑒 =  

1

Δ𝑡
. Therefore, the 

forecasting period in such problems is T≈Δt=1/λ. In our 

case, T≈1/0,2183=4,6 years. 

On the other hand, based on the irregularity and 

cyclicality of the time series of the 500 kV OHL failure 

rate revealed in [2] for the period 1974–2000. (see § 1.3) 

V.A. Skopintsev put forward a hypothesis about the 

possible cyclicity of accident rate in power systems. He 

suggested that the accidence in electrical grids is 

oscillatory in nature with a period close to the (quasi) 

eleven-year solar cycle. It is known to affect the change 

in natural and climatic factors and social phenomena, as 

indicated by A.L. Chizhevsky at the beginning of the last 

century [15]. 

In [2], three mathematical models are implemented to 

predict the accident rate of 500 kV OHL in time t (Table 

1). 

 

 

Table 1. Mathematical models of the time series of the failure 

frequency [2] 

Component Parameter Mathematical model versions 

 

 

 

 
I II III 

Straight-

line trend 

 

а, 1/(year 100 

km) 0,167 0,155 0,151 

 

 

b, 1/(year 100 

km) 
0,012 0,013 0,013 

Harmonics 

of cyclical 

component 

 

 

1, 1/year 

12,8 11,06 11,06 

 

 

G1, 1/(year 

100 km) 
0,081 0,072 0,071 

 

 
2, 1/year – 5,53 5,53 

 

 

G2, 1/(year 

100 km) 
– 0,032 0,029 

 

 
3, 1/year 3,9 3,69 3,69 

 

 

G3, 1/(year 

100 km) 
0,056 0,04 0,033 

 

 
4, 1/year 2,8 2,77 – 

 

 

G4, 1/(year 

100 km) 
0,087 0,082 – 

 

 
5, 1/year 2,4 2,21 – 

 

 

G5, 1/(year 

100 km) 
0,083 0,009 – 

Random 

component 

m, 1/(year 

100 km) 
3,3710–17 –2,7810–17 1,1310–16 

 

 

, 1/(year 100 

km) 
0,07 0,1 0,06 

 

The notations used in Table 1: a and b - some 

coefficients of the linear trend (a+bt); λi=1/fi; fi is the 

fundamental frequency of the i-th harmonic; 

Gi=√𝐴𝑖
2 + 𝐵𝑖

2
; Ai and Bi - some parameters of 

harmonics; m and σ are parameters of Gaussian white 

noise (mathematical expectation and standard deviation). 

The first version of the model from Table 1 consists 

of a linear trend and four harmonics, and the random 

component is represented as Gaussian white noise. 

Following the hypothesis of the existence of a 

relationship between the number of disturbances on 

OHL and solar activity, Table 1 gives the second option 

- a polyharmonic model, where the harmonic with a 

period of 11,06 years is taken as the fundamental 

(nyquist) frequency and four more harmonics with 

multiple periods are added. In the third version of the 

mathematical model, in comparison with the second 

version, the last two high-frequency harmonics are 

excluded at a constant fundamental frequency. 

Fig. 3 shows the graphs obtained by the author [2] of 

a smoothed series of accident rate for 500 kV OHL 

(curve 1), a random component (2), regression of 
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accident rate for 500 kV OHL with a prediction for 10 

years (until 2011), calculated using the third 

mathematical forecasting model from the table 1 (3), as 

well as solar activity - Wolf numbers divided by 1000 

(4). 

 

Fig. 3. Prediction of accident rate of 500 kV OHL [2] 

 

Research [2] in the field of predicting the accident 

rate of OHL should be recognized as pioneering in the 

past 20-year period. However, this approach to 

prediction appears to be extremely simplified and does 

not take into account the capabilities of the modern 

mathematical apparatus for time series prediction, which 

are widely used in various fields of knowledge. For 

example, of the traditional regression methods, there are 

more powerful tools - singular spectrum analysis (SSA). 

Here, the original series is also represented as a set of 

components. Only in SSA they are generally not 

harmonic. In addition, in recent years, prediction 

methods based on elements of artificial intelligence are 

increasingly used. And this cannot be ignored. 

The above studies indicate that the time series of the 

failure rate is not ordered, not regular. More precisely, 

this series has signs of chaos expressed in fractional 

fractal dimension and positivity of the maximal 

Lyapunov exponent. It is well known that prediction 

technique of such series in conditions of chaotic 

dynamics have specific features. 

Comparing the time series in Fig. 1 and the accident 

rate prediction in Fig. 3 in the interval 2002–2011, we 

note that the prediction [2] turned out to be largely 

unreliable. According to [2], for 500 kV OHL in the 

region ω=0,5–0,7 1/(year 100 km) with actual values 

predominantly up to 0,2–0,3 1/(year 100). The exception 

was the first prediction year (2002) - 0,54 1/(year 100 

km) with the fact 0,6 1/(year 100 km), as well as the 

ninth prediction year (2010) - 0,67 1/(year 100 km) with 

the fact 0,66 1/(year 100 km). For the other eight years 

of the period under review, there were two to threefold 

deviations from forecast to fact. Consequently, the 

mathematical prediction model [2] worked only for a 

year ahead. Given that the maximum prediction depth 

using the mathematical apparatus of deterministic chaos 

is no more than five years. 

Conclusion 

The overhead lines of the main electrical grid, which 

form the backbone of the country's energy systems, are 

the most damaged elements. Therefore, their reliability 

should be given close attention. 

The failure rate of the overhead line is traditionally 

considered as some variable averaged over an arbitrary 

time interval. Given that the accident rate of overhead 

lines from year to year has significant variability, 

irregularity and, apparently, chaos. 

In the general case, the accident rate of OHL 

randomly depends on the impact of natural, social and, 

perhaps, socio-economic factors. 

The existing approaches to predicting the accident 

rate of OHL in the main grids of power systems are 

extremely stingy and are based on the simplest 

regression models, which are based on the Fourier 

transform. 

Predicting the reliability characteristics of 500 kV 

OHL using the mathematical apparatus of deterministic 

chaos gives an acceptable forecast depth of only up to 

five years. 
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