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Abstract. The problem of electric power systems (EPS) flexibility is discussed, definition of EPS 

flexibility is given. Causes of EPS flexibility degradation and measures for flexibility enhancement are 

analyzed based on the review of publications. Urgent problems of EPS flexibility studies are identified and 

directions of further studies of the electricity supply systems are grounded.  
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Introduction 
Electric power systems (EPS) flexibility in recent 

years has been in focus of studies that is evidenced by 

the list of references to this paper.  Meanwhile, the 

problem of flexibility as applied to complex 

technological systems was stated as early as in 2002 

[54]. Generalizing a number of definitions of ‘EPS 

flexibility’ term, Ref. [46] offers the EPS flexibility to be 

defined as ability of a system to maintain normal 

operating conditions (regimes) under the impact of 

internal (sudden changes in generating sources, 

fluctuations in loads and line flows) and external (sudden 

external impacts of different origin) random (uncertain) 

factors. The factors mentioned were systematized and 

measures for EPS flexibility enhancement were briefly 

discussed in [46, 55]. Detailed review of measures on 

EPS flexibility enhancement in Ref. [23] is also worth 

mentioning (393 cited papers). Generalizations proposed 

in [23] were taken account of in this paper without 

referring to the papers cited there.  

Objective of the present study is to give a detailed 

comparative analysis of papers published in recent years 

with focus on the causes of EPS flexibility degradation 

and measures for its enhancement. The analysis forms 

the base for statement of the considered problem.  

Analysis of EPS flexibility degradation 
problems 

Let us first formulate some obvious conclusions on 

the base of the analysis of papers listed further as regards 

the causes of EPS flexibility degradation.  

а) In the majority of cases (73%) the main cause of 

EPS flexibility degradation is assumed to be fluctuations 

in power generation by wind power plants (WPP) and 

photovoltaic modules (PVM), wind power plants 

prevailing. It is not surprising as authors of appropriate 

studies are from countries with high share of WPP in the 

installed capacity. It is obvious that it is those studies 

that actualized the EPS flexibility problem. 

b) Works that consider uncertainty of active 

consumers’ loads as the cause of flexibility degradation 

come second (20%). It is also understandable as in the 

conditions of random fluctuations of electricity prices at 

the spot market an active consumer makes on-line 

decision on the volume of electricity to be purchased, 

and this volume is random for a dispatcher.  

c) Publications that consider reduction of regulating 

effect of load in terms of voltage and frequency, and 

frequency characteristics of generation as causes of EPS 

flexibility degradation come third (15%). This problem 

was first stated in [56]; it is related to large-scale use of 

frequency control of electric motors of consumers and to 

connection of wind mills, high-speed gas-turbines and 

some other generating units to EPS via reversible 

converters.  

d) Connection of generators via reversible converters 

and low inertia constants of rotors of small generating 

units connected directly to the system reduce the inertia 

and, hence, EPS flexibility.  

e) Impact of external disturbances as a factor of EPS 

flexibility degradation was directly studied in few 

papers. An obvious more or less higher indirect impact 

of this factor in combination with other factors, e.g., with 

reduction of EPS inertia, reduction of regulating effects 

of load and generation and some others is also worth 

mentioning.  

Let us now briefly comment on measures for 

enhancing the EPS flexibility.  

Analysis of publications listed evidences that active 

load control (66% of cases), provision of power balance, 

as a rule, at the expense of emergency load shedding, 

active power reserve (55% of cases) and use of energy 

storage devices (37% of cases) are the most popular 

measures of EPS flexibility enhancement. Technological 
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and market control (25% of cases) and reconfiguration of 

the electric grid (12% of cases) deserve lesser attention.  

Analysis made allows us to make an obvious 

conclusion that peculiarity of EPS flexibility problem is 

mainly conditioned by specific features of the studied 

systems. As to flexibility enhancement measures, 

complex use of two and more measures prevails (72% of 

cases). 

Validation of directions in EPS flexibility studies 

Since urgency of EPS flexibility studies is 

conditioned by specific features of the studied systems, 

let us consider this specificity as applied to Russian 

conditions.  In this respect the following factors should 

be mentioned.  

Should power generation by wind mills and PVM be 

considered as the main cause of flexibility degradation, 

then, in the conditions of centralized power supply in 

Russia, despite governmental incentives, the share of 

generation by renewable energy sources (RES) in the 

future will hardly be high, with some local exceptions, 

e.g., South Interconnected EPS where RES share by 

2025 is expected to be as high as 30% [63]. Islanded 

remote electricity supply systems (PSS) hold a unique 

position as RES there are competitive with fueled power 

plants and can make a considerable share in the total 

installed generating capacity.   

Thus, summing up the initial conditions, the object of 

studies may be an islanded PSS that in the most general 

case includes a conventional fueled power plant, a wind 

mill, a power storage device, a car charging station that 

along with car charging may supply power to PSS, and 

active consumers that keep control of their power 

consumption. All those units are connected to a 

distribution network of PSS.  It is necessary to determine 

the required capacity and electric capacity of the power 

storage device subject to availability of the given 

parameters of the remaining devices, structure and 

parameters of the distribution network.   

Difficulty of studying the presented object lies in the 

fact that operating conditions of the wind mill, charging 

station, power storage device and behavior of active 

consumers are subjected to the impact of random factors.  

Let us start with the active load that, along with 

conventional irregular fluctuations, has a random 

component determined by independent choice of a 

consumer to control his electricity consumption 

depending on the state of the spot market.  Then, as it 

has already been noted, power generation by a wind mill 

is of random nature. Charging/discharging of the power 

storage device is also a random process.  A random 

process of a car charging station has the most 

complicated nature.  Random factors here include:  a mix 

of cars at the charging station at every time moment; 

time of arrival and departure of each car; degree of 

charging/discharging of accumulators of every car at 

every time moment.  

Each of these random factors shall be assigned 

probability distribution laws. Monte-Carlo method 

allows identification of random state for each random 

factor at a given time moment. A mix of those random 

states forms random state of a power supply system for 

which the optimum power flow in the distribution 

network is determined using the criterion of minimum 

electric losses subject to account of constraints on the 

voltage levels in the nodes and currents in the branches.  

The result is determination of the size of capacity 

required at a given time moment for the power storage, 

keeping in mind that the node to which the power 

storage is connected is balancing one.  Since the required 

electric capacity of the electricity storage shall be 

determined along with its power, the considered 

simulating procedure is repeated for multiple time 

moments within the specified time interval (e.g., a year) 

in conformity with load curves of consumers.  

The problem of losses minimization in a power 

supply system has the form: 

min Ploss  
(1) 
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Where k  is the number of time interval, t� ; ,i j  are 

numbers of PSS nodes; a system of equations (2) with 

account of (3) describes power flow in the PSS network, 

each iteration being controlled by constraints on the 

voltage levels in nodes (8) and currents in branches (10), 

and by generated active power of a conventional 

generator (4), by a wind mill (5) and by the power 

storage device (6); expression (8) forms charging mode 

limitations in the energy storage operation. Relations (6) 

and (7) represent both the stationary electricity storage, 

and a car charging station. 

Conclusion

Analysis of recent studies on the EPS flexibility 

revealed causes of flexibility degradation due to random 

fluctuations in power generation by renewable energy 

sources and allowed one to give recommendations on 

measures for flexibility enhancement. This analysis with 

account of conditions in Russia allowed us to state the 

problems of PSS flexibility studies. Consideration was 

given to the main statements of a simulation algorithm 

for determination of required power and electric capacity 

of the energy storage device to balance irregularities of 

power production by wind mills subject to account of the 

main random affecting factors.  
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Innovative Technologies and Tools for Flexibility 

Assessment and Enhancement of Future Power 
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Dortmund University of Technology, Germany. 
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