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Abstract. The paper offers an algorithm for detection of erroneous measurements (bad data) that occur at 

cyberattacks against systems for data acquisition, processing and transfer and cannot be detected by 

conventional methods of measurement validation at EPS state estimation.  Combined application of wavelet 

analysis and theory of fuzzy sets when processing the SCADA and WAMS measurements produces higher 

accuracy of the estimates obtained under incomplete and uncertain data and demonstrates the efficiency of 

proposed approach for practical computations in simulated cyberattacks. 
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1 Introduction  
Enhancement of information and communication 
infrastructure during EPS digitalization is ensured by 
development of sensor and network technologies that are 
based on introduction of digital equipment, application 
of intelligent technologies in the systems for data 
measurement, interpretation and transfer that are needed 
for EPS operation control.  They raise the efficiency and 
flexibility of EPS control and monitoring [1].  At the 
same time the problems of data quality occur during 
combined application of SCADA and WAMS 
measurements in the conditions of growing number of 
cyberattacks against cyber-physical EPS.  Noted is the 
negative impact of the above problems on the accuracy 
of solving the EPS state estimation problems due to 
erroneous measurements that are not detected by 
conventional methods [2,3], and due to lack of 
sufficiently scope of measurements [4]. 

Therefore, development of algorithms for data 
processing and interpretation at low quality of SCADA 
and WAMS measurements as a preliminary step of EPS 
state estimation is of practical importance.  

EPS state estimation includes such functions as 
analysis of EPS observability, analysis of the network 
configuration (topological network analysis), 
identification and filtration of ‘bad data’, additional 
computation of non-measured parameters [5].  
Availability of excessive measurements and the number 
of available measurements play an important role in 
obtaining all the estimates of conditions variables. 

For the purpose of bad data identification, including 
those in the algorithms for bad data detection on the base 
of test equations [5], all the measurements are divided 
into the following groups:  
- valid measurements;  

- erroneous measurements whose values can be replaced 
by computed ones;  
- doubtful measurements, i.e., measurements included 
into critical groups that may contain bad data, but their 
values cannot be computed based on valid data, thus 
increasing the dispersion;  
- unchecked or critical measurements; they are 
measurements that were not included into test equations 
and errors in them cannot be detected [6]. 

The use of PMU measurements along with SCADA 
measurements improved circumstances related to "bad 
data" and to validation of measurements [7].  
Nevertheless, [8] demonstrates vulnerability of EPS state 
estimation towards unidentifiable cyberattacks.   

The paper analyzes the quality of SCADA and 
WAMS measurements at cyberattacks against 
information-communication EPS infrastructure.  An 
algorithm for identification of erroneous measurements 
under data uncertainty using wavelet analysis and fuzzy 
sets is proposed.  Implementation of the algorithm is 
demonstrated on the simulated cyberattacks. 

2 Quality of SCADA and WAMS 
measurements 

Introduction of new information and communication 
technologies during EPS conversion into a Smart Grid 
would, along with SCADA measurements, provide 
control systems with high-frequency PMU 
measurements. 

Interrelations between an information-
communication subsystem and a physical subsystem of a 
cyber-physical EPS are in practice constrained by data 
quality and security.  Reliable EPS operation can be 
compromised by incomplete and unreliable SCADA and 
WAMS measurements.  
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Under data quality we mean the degree of their 
completeness and reliability [9]. 

During EPS digitalization it is important to take into 
account the problem of data quality for EMS 
applications used in EPS control as risks of external and 
internal disturbances for cyber security and due to 
peculiarities of the existing systems for measured data 
acquisition, transfer and processing are growing; the 
risks are originated by the following devices:  
- SCADA RTU; 
- WAMS PMU; 
- RTU and PMU [10]. 

PMU measurement technologies are currently 
applied in EPS, which allows timely control of the 
system state.  But for a number of reasons, including 
economic ones, replacement of all RTU by PMU is not 
currently feasible.  Therefore, EPS state estimation is 
made either using the data of SCADA measurements, or 
mixed measurements of SCADA and PMU.  EPS state 
estimation using mixed measurements of SCADA and 
PMU gives rise to certain difficulties.  Partially the states 
can be measured directly using PMU, the remaining 
states shall be estimated using RTU, which, in turn, 
requires the development and modification of 
conventional EPS state estimation methods whose 
algorithms are based on the integration of SCADA and 
PMU measurements [4]. 

Successful attacks against SCADA and WAMS also 
have an impact on the quality of measurements and 
occurrence of mistakes in measurements, data loss and 
loss of synchronization being their consequences.  Ref. 
[9] shows dependence of the cyber security properties 
loss on the data quality.   

For identification of consequences of successful 
cyberattacks the focus is made on accuracy, adequacy, 
timeliness, synchronization, consistency and sequence of 
measurements as they characterize their quality.  

Reliability requires accuracy and synchronization of 
measurements in time within permissible mistakes 
without violating the sequence of data occurrence.  
Accuracy of estimation requires account of such a factor 
as consistency of measurements.  Completeness is 
characterized by availability of data and requires that 
data of measurements be without losses and were timely, 
i.e., delivered within permissible time limits. 

Consequences of successful cyberattacks for factors 
characterizing the data completeness and reliability are 
analyzed in Ref. [9] based on the algorithm developed by 
the authors for data quality evaluation at EPS state 
estimation.  

Most frequent cyberattacks against cyber-physical 
electric power systems whose consequences are 
misleading for EPS state estimation are False Data 
Injection (FDI) and Denial of Service (DoS) attacks [11].  
FDI attacks are targeted at changing the measurement 
data and can bypass the routes for identification of bad 
data in EMS.  Successful DoS-attacks may cause 
considerable loss of measurements thus making the 
system unobservable, and application of conventional 
EPS state estimation methods becomes impossible.    

For facilitating the solution of the EPS state 
estimation problems in the conditions of cyberattacks 

that deteriorate the data quality, for identification of 
erroneous measurements the data should be processed as 
a preliminary stage of EPS state estimation on the base 
of wavelet analysis and fuzzy sets. 

3 An algorithm for identification of 
erroneous measurements
This algorithm should be developed for assessing the 
measurement accuracy required for validating the 
reliability of data used for EPS state estimation.  

FDI attacks against random processes of changes in 
the conditions parameters are more difficult to detect 
than FDI attacks against static models as attacks can be 
mixed both with errors of the measurement route and 
with noises of communication channels.  The model of 
measurements in this case can be described as 

)()()()( tattyty y ��� � , (1) 

where )(ty  is a flow of true values of measured 
parameters; )(ty�  is a vector of measurement noise with 

normal distribution ),0()( 2
yy t �� �  with zero 

mathematical expectation and dispersion 2
y�  

characterizing the accuracy of measurements; )(ta  is a 
cyberattack [12].  
 Attacks )(ta  can be launched by injection of false 
data into the flow of measurements and/or noise. 
 The proposed Bad Data Identification (BDId) 
algorithm includes two stages:  
1. Wavelet analysis of information flows on the base of 
the validation scheme proposed in [12]; 
2. Identification of erroneous measurements at the i -th 
time moment based on a fuzzy system of the logical 
conclusion. 
 The advantage of wavelet conversion of 
measurement flows is reduction of the impact of 
cyberattacks on the data reliability by noise filtration and 
elimination (smoothing) of errors in measurements.   
 Furthermore, use of wavelet analysis enhances the 
accuracy of measurement flow characteristics that are 
required for developing the Fuzzy Inference System 
(FIS) at the second stage of erroneous measurements 
identification. 
 For developing the FIS, the following characteristics 
of measurement flows shall be determined:   
- mathematical expectation ym ; 

- standard deviation y� ; 

- minimum ymin  and maximum ymax  values. 

 “Measurement” of the form « y
~ ��� tryy » and 

“Consistency” characterized by observance of the laws 
of electric circuits for the considered measurements are 
assumed to be the input linguistic variables (LV). 
“Accuracy of measurements” characterizing availability 
or absence of false  data injected by cyberattacks is an 
output variable.  Basic term-manifolds of linguistic 
variables are defined, and membership functions (MF) 
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are described (Table 1-3). A FIS to determine the level 
of measurement accuracy has been developed (Fig. 1). 

 
Fig. 1. A FIS to determine the level of measurement accuracy. 

Table 1. Basic term-manifold of LV “Measurement”. 

Term name  MF representation 

About y~  Gaussian MF 

Approximately y~ Gaussian MF

Much higher than y~ Z-shaped MF

Much lower than y~ S-shaped MF
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where k  characterizes the slope of a membership 

function, 
y
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)( �
�  is dispersion of measurement 

values. 
Z-shaped and S-shaped membership functions are 

used for utmost terms [13]. 

Table 2. Basic term-manifold of LV “Consistency”. 

Level Description

0.75-1 Measurements are consistent 

0.25-0.75

Measurements are consistent with a 

permissible error conditioned by 

technological peculiarities

0-0.25 Measurements are inconsistent 

 

 

 

 

Table 3. Basic term-manifold of LV “Measurement 
Accuracy”. 

Level Description

0.75-1 High (reliable measurements)

0.25-0.75 Middle (doubtful measurements)

0-0.25 Low (erroneous measurements)

 
 A bad data identification scheme obtained is given in 
Fig. 2. 

Flow

 of 

measurements

Wavelet 

analysis
FIS

EPS state 

estimation

 
 
Fig. 2. Identification of erroneous measurements at EPS state 
estimation. 

4 Case study
For validating the efficiency of using the developed 
BDId algorithm, we analyzed PMU measurements of a 
real diagram of the electric network (Fig. 3) where 
PMUs are located.  The scope of sampling for every 
measurement was 30000�n  with digitization interval 
of 20��t  ms. Wavelet analysis has shown that 
measurements have not gross errors.

Fig. 3. A section of the electric network. 
Figs. 4-7 present the initial graphs of changes in the 

active power flows 32�P  and 23�P , in reactive power 
flows 3-2Q  and 23�Q  in lines 2-3. 

 
Fig. 4. Changes of the active power flow 32�P . 

 
Fig. 5. Changes of the active power flow 23�P . 
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Fig. 6. Changes of the reactive power flow 32�Q . 

 
Fig. 7. Changes of the reactive power flow 23�Q . 

Characteristics needed for constructing a fuzzy 
inference system for BDId were computed for these 
measurement flows (Table 4).  

Table 4. Characteristics of processes of active and reactive 
power change in Line 2-3. 

32�P 23�P 32�Q 23�Q

ym -1864 1894 -53 .94 130 .9

y� 5 .635 5 .772 1 .896 2 .826

ymin -1883 1877 -58 .9 119 .5

ymax -1847 1914 -45 .86 137 .9

 Membership functions in the system of a fuzzy 

logical conclusion were constructed for linguistic 

variables “Measurement 32�P ”, “Measurement 23�P ”, 
“Measurement 32�Q ”, “Measurement 23�Q ” using the 

characteristics obtained.   
 Implementation of BDId algorithm included 
calculations during simulation of FDI cyberattacks that 
cannot be detected by conventional bad data 
identification methods, i.e., by a method of test 
equations, when validation is done based on residuals of 
test equations, and by using a classical state estimation 
method, when measurements reliability is validated by 
weighted residuals of estimation [5].  
 Calculations were made in the simulation experiment 
that consisted in simulating the random mistakes of 
measurements in the standard steady-state conditions 
obtained by calculations using a program for computing 
the steady-state conditions or state estimation.  
Those measurements included false data injection attacks 
in the form of errors CAb . Model (1) in this case has the 
form: 

),()()(1 tbttyy CAyCA ��� �  (3) 

4.1 Simulating the cyberattacks that are not 
identified by test equations 

For validating the measurements using the test equations 
method, the test equations are constructed and the 
following condition is verified: 

kk dw �  (4) 
where kw  is residual of test  equation, kd  is some 
threshold value. If condition (4) holds, then all the 
measurements in this test equation are assumed to be 
valid.  

Two kinds of gross errors were simulated:  -100 MW 
in the measurement 32�P  and +100 MW in the 
measurement 23�P .  Table 5 presents the results of bad 
data detection and state estimation using the test 
equation method, identification of erroneous 
measurements using the bad data detection method and 
BDId algorithm. 

Table 5. Results of state estimation by test equation method, 
identification of erroneous measurements using bad data 

detection method and BDId algorithma. 

Pa
ra

m
et

er

Etalon

Measurements
Test 

equation 
method BDIdwithout 

gross 
error

with 
gross 
error

BDD SE

21�P -992.7 -993 - V -994 V

21�Q -187.5 -183 - V -189 V

12�P 1010 1013 - V 1011 V

12�Q -468 -446 - V -464 V

32�P -1880 -1879 -1979 V 1982 E

32�Q 29 34 - V 48 V

23�P 1896 1903 2003 V 2000 E

23�Q -92 -90 - V -85 V

The value of a objective function is 9.98

 
 Calculations have shown that measurements 32�P , 

2-3P  corrupted by a cyberattack were defined by test 
equations method as reliable and were used by the state 
                                                
a BDD – Bad Data Detection, SE – State Estimation, V- Valid, 
E – Erroneous.
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estimation algorithm for computation of the estimated 
conditions.  The estimates obtained considerably 
deviated from standard conditions though the value of 
objective function meets the � -square criterion [5]. 
Analysis of measurements 32�P  and 23�P  using the BDId 
algorithm allowed identification of measurements as 
erroneous ones with the accuracy level of 0.12 (low 
level).   

4.2 Simulation of cyberattacks that are not 
identified by the state estimation residuals 

Here they give the results of calculations while 
simulating the ‘false data injection’ attack following the 
technique described in [2].  This technique was 
developed for the case when the problem of state 
estimation is solved using the classical method through 
the state vector x , and bad data are detected a posteriori 
based on the weighted residuals of estimation that are 
computed using the following formula:   

,)ˆ(ˆ 2/1 xyyRr yW �� �  
and for reliable measurements should not exceed the 
threshold of 3-3.5.  

Based on the classical statement of the state 
estimation problem considering the relation between 
estimates of measurements ŷ  and estimates of the state 
vector x̂  ( xHy ˆˆ � , where H  is a Jacobian matrix), 
cyberattacks were simulated according to [2]: 
1. A non-zero vector c is specified that distorts the state 
vector components. 
2. A vector of attacks Hca �  of length m is formed, 
where m is the number of measurements.  
A vector of erroneous measurements is determined as: 

ayya �� . 
3. State estimation is performed.  State vector  estimates 
obtained after quality assessment are equal to:  

cxxa �� ˆˆ  
4. Estimation residuals are computed:  

xHyHcaxHy

cxHayxHyr aaw

ˆ)(ˆ

)ˆ(ˆ

������

�������
. 

In this case, we get the estimation residuals that are 
equal to residuals computed based on the state estimation 
results without a cyberattack.  

Table 6 presents the results of state estimation and 
identification of erroneous measurements using the 
BDLd algorithm for the distorting vector 

)0,0,20,0,0(�c . 
The results obtained evidence that despite the false 

data injected into the state vector, the method of 
weighted residuals analysis did not identify erroneous 
measurements, i.e., did not allow the cyberattack to be 
identified.  Accuracy levels computed based on the BDId 
algorithm for 32�P  (0.126), 32�Q  (0.117), 23�P (0.125), 

23�Q  (0.117) allowed those measurements to be 
identified as erroneous. 

Table 6. Results of state estimation by the classical method; 
identification of bad measurements using weighted residuals 

and BDId. 

Pa
ra

m
et

er

M
ea

su
re

m
en
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w
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ou

t g
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 e
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A
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k

M
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ss

 e
rr

or

Computations 
using classical

method

BDId

E
st

im
at

es

W
ei

gh
te

d 
re

si
du

al
s

21�P -993 0 - -994 0.256

21�Q -183 0 - -189 0.709

12�P 1013 0 - 1011 0.257

12�Q -446 0 - -464 1.86

32�P -1879 -32.5 -1911 -1928 3.49 E

32�Q 34 -432.5 -398 -395 0.327 E

23�P 1903 33.3 1963 1946 3.05 E

23�Q -90 434.8 345 339 0.682 E

The value of a objective function is 20.17

6 Conclusion
The paper proposes a data processing algorithm (as a 
preliminary stage of EPS state estimation) for 
identification of erroneous measurements caused by 
cyberattacks against SCADA and WAMS. This 
algorithm is based on the wavelet analysis and fuzzy 
sets. The findings have shown that its use can timely 
prevent the impact of successful cyberattacks on the EPS 
state estimation results and ensure reliable data control. 
The efficiency of this algorithm has been confirmed by 
experimental calculations. 

Acknowledgement 

The research was carried out as part of the scientific 
project III.17.4.2. of the basic research program SB 
RAS, reg. number AAAA-A17-117030310438-1. 

References 
1. Voropai N. I., Elektrichestvo 7, 12-21 (2020)
2. Y. Liu, M. K. Reiter, and P. Ning, Computer and 

Communications Security, 21-32 (2009)

E3S Web of Conferences 216, 01029 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601029

 

5



3. Khohlov M.V., Methodological issues of studying 
the reliability of large energy systems, 366-376
(2016)

4. L. Hu, Z. Wang, X. Liu, A. V. Vasilakos and F. E. 
Alsaadi, IET Control Theory & Applications 11(18),
3221-3232 (2017)

5. Gamm A.Z., Kolosok I.N., Identification of bad data 
in telemetry measurements in electric power 
systems, 152 (2000)

6. Glazunova A.M., Kolosok I.N., Energy of Russia in 
XXI century: development, operation, and control,   
696-704 (Irkutsk, 2006)

7. A. Tarali and A. Abur, IEEE PES ISGT Europe, 1-8
(Berlin, 2012)

8. Khohlov M.V., Methodological issues of studying 
the reliability of large energy systems: Urgent 
reliability problems of energy systems, 557-566 
(2015)

9. Kolosok, I.N., Gurina L.A., Informational and 
mathematical technologies in the science of control
1(17), 68-78 (2020)

10. G. A. Ortiz, D. G. Colomé and J. J. Quispe Puma,
IEEE ANDESCON, 1-4 (Arequipa, 2016)

11. Kolosok, I.N., Gurina L.A., Methodological issues 
of studying the reliability of large energy systems,
238-247 (2019)

12. Kolosok I., Gurina L., ICIEAM, 1-4 (Moscow, 
Russia, 2018)

13. Bogatyrev L.L., Manusov V.Z., Sodnomdorzh D.  
Mathematical modeling of EPS conditions under 
uncertainty, 348 (1999)

E3S Web of Conferences 216, 01029 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601029

 

6


