
*
Corresponding author: objsev@mail.ru 

Hidden Markov Model of System Elements Technical 
Maintenance by Age 

Yuriy Obzherin1,*, Mikhail Nikitin1, and Stanislav Sidorov1 

1Sevastopol State University, Chair of Higher Mathematics, 299053 Sevastopol, Russia 

Abstract. Technical maintenance is between the methods of operation reliability and effectiveness 

increasing for systems of different purposes including power systems. In the paper the hidden semi-Markov 

model of technical maintenance is built basing on the semi-Markov model of two-component system 

elements technical maintenance by age. The hidden Markov model is used to solve the problems of 

dynamics analyzing, predicting the states of a system modelled based on the vector of signals obtained 

during its operation. 

Introduction 
Technical maintenance (TM) is between the methods of 
operation reliability and effectiveness increasing for 
systems of different purposes including power systems 
[1 – 4]. If it is used in the system, a preemptive recovery 
of the parameters of the system elements is carried out 
according to certain rules in order to reduce the 
probability of system failures and maintain the efficiency 
of its operation. Semi-Markov processes with a discrete 
or discrete-continuous set of states are widely used to 
model systems [5–8]. In the process of functioning of the 
system for which the semi-Markov model is built, it is 
necessary to assess how the constructed model agrees 
with the data obtained during the functioning of the 
system, to refine it, to analyze the functioning of the 
system and to predict its state based on the information 
received. Hidden Markov models and hidden semi-
Markov models can be used to solve these problems [9–
12]. In this paper, a hidden Markov model of 
maintenance by age of elements of a two-component 
system is constructed. Using a hidden model, the tasks of 
analyzing of the dynamics, predicting of the states of the 
system, based on the signal vector obtained during its 
operation, are solved. 

1 Description of the system 

Let us consider a two-element system. Let us describe 
the maintenance strategy by the age of its elements [4]. 
At the initial instant the operation of the system begins 
and the admissible operating time (age) hi, i = 1,2 of 
each i-th element of the system is being assigned, upon 
reaching of which its scheduled maintenance is to be 
carried out. The time to failure of the i-th element of the 
system is a random variable (RV) - αi with a distribution 
function (DF) Fi(t), i = 1,2. If by the appointed time hi  
the i-th element of the system has not failed, then the 

scheduled maintenance of the element begins, which 
completely renews it. The duration of this maintenance 
is a RV τi with DF Ri(t), i = 1,2. If the i-th element of the 
system fails before the predefined moment hi, then the 
failure is detected instantly and its emergency recovery 
(ER) begins. The duration of this restoration work is RV 
βi with DF Gi(t), i = 1.2. The ER also results in that 
element is being also completely updated and the entire 
maintenance process is being repeated a new. It is 
assumed that the second element of the system does not 
turn off as a result of emergency failure or in connection 
with maintenance start of any element. 

2 Construction of a semi-Markov model 
of the system 
To describe the functioning of the system, let us use the 
semi-Markov process (SMP) ξ(t). Let us introduce a 
space of states of the form 
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where i = 1,2 indicates the number of the element in 
which the change in physical state has occurred. The dk 
component of the vector describes the physical state of 
the element with the number k: 
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The continuous component xk of the vector indicates 

the time elapsed since the last change in the physical 
state of the element with the number k, k = 1,2; note that 
xi = 0.The timing diagram of the described system 
operation is shown in Fig. 1. 
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Fig. 1.Timing diagram of the two-component system operation with a maintenance strategy based on the age of elements.

In expanded form, the phase space of system states 
is: 

Е = {1, 1110x2, 1100x2, 1120x2, 1010x2, 1000x2,  

1020x2, 1210x2, 1200x2, 1220x2, 211x10, 201x10,  

221x10, 210x10, 200x10, 220x10, 212x10, 202x10,  

22x10}. 

Let us find the sojourn times in the states of the 
system. To do this, let us introduce RV: 
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where ˄ is the minimum sign. RV δz
(k) are the sojourn 

times in the states of the SMP ξk (t), which describes the 
operation of the k-th element of the system, k = 1,2. 

Let us define Vz
(k)(t) = P(δz

(k) <t) as DF of the RV 
δz

(k), � �� � � �� �tVtV k
z

k
z ��1 , vz

(k)(t) asdistribution densities 
(DD) of the RV δz

(k), then 
� �� � � � � �thtFtV kk
k ��� 11 , � �� � � �tGtV k

k �0 , � �� � � �tRtV k
k �2 ,

� �� � � � � �thtftv kk
k ��� 11 , � �� � � �tgtv k

k �0 , � �� � � �trtv k
k �2 ,  

k= 1,2. 
Then sojourn time in the state xdi is defined by the 

equality 
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k
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Let us determine the probabilities the EMC {ξn; n≥0} 
transitions for the states 1000x2, 210x10, 1020x2, for 
other states they are defined similarly: 
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Let us find the stationary distribution of the 
constructed SMP ξ(t) that represents the superposition of 
the independent SMP ξ1(t), ξ2(t) describing the operation 
of the system's elements. 

In accordance with [8], the stationary distribution of 
n independent SMP superposition EMC is determined by 
the formula: 
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where � �iz xF
i

is a DF of SMP ξ(i)(t) in the state zi, 
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Let us introduce the notation 
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� �� �k
z�  is an EMC stationary distribution for the SMP 

ξk(t), describing the operation of k-th element of the 
system. Using (2) let us obtain that SMP ξ(t) EMC 
stationary distribution takes form: 
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where the constant с is being found from the 
normalization requirement. 

E.g., using (3) let us obtain 

� � � � � �2222
2
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2
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3 Example of electric power system 
modelling
To simplify the model of the system let us merge the 
constructed semi-Markov model using the stationary 
phase merging algorithm proposed in [5, 6]. Phase space 
of states of the initial model is being split into N = 9 
classes 

E00={1000x2,200x10},  E11={1,1110x2, 211x10},  

E22={1220x2,222x10},E21={1210x2,221x10},   

E12={1120x2,212x10},  E10={1100x2,210x10}, 

E01={1010x2,221x10}, E02={1000x2,200x10},  

E20={1200x2,220x10}, 

each of which is “glued” into one state of the merged 
model. 

Phase space of states of the merged model takes form 

E = {00, 11, 22, 21, 12, 10, 01, 02, 20}. 

It is not difficult to establish the physical meaning of 
the merged model states. Thus the state 21 means that 
the first element is on maintenance, the second is 
operational. 

Let us determine the merged model EMC transitions 
probabilities that, in accordance with [5], can be found 
by the formula 
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where ρ(de) is the EMC stationary distribution, P(e,Er) 
are the merging model EMC transition probabilities.  

Let us use (4) to find transition probabilities ˆ r
kp  of 

the merged model. Thus, for the states 00, 11, 12 they 
take the next form: 
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4 Hidden Markov model based on 
merged semi-Markov model

Let {Xn, n=1,2,…} be the merged model EMC, the 
transition probabilities of which are defined by the 
formulas (5). 

Let us suppose that during the system S operation the 
merged model EMC states are not observed (hidden 
states), but only the number of operable components of 
the system is observed at the instant of the system 
transition to a new state. 

Hence, the set of the signals takes form:  

J = {0, 1, 2}. 
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Let us consider the connection between the merged 
system EMC states and the signals, i.e. define the 
function R(S|x) [9]: 

� � � � � � 1|,,ˆ,|| ������ �
�Js

nn sRJsEXsSPsR xxxx ,(6) 

where Sn is the n-th signal. 
The connection function between the states of the 

merged model EMC and the signals is represented in the 
Table 1. 

5 Solving of the problems of Hidden 
Markov model theory 

Following [9, 10], let us consider the main problems 
of the theory of hidden Markov models in relation to the 
constructed hidden Markov model. 

Let � �nn SSSS ,...,, 21� be a random vector of the first 
n signals. For the vector of the signals given

� �nn ssss ,...,, 21� let it be � �nn ssss ,...,, 21� nk  . 
It is required to evaluate the EMC characteristics of 

of the merged (hidden) model based on the vector of 
signals ns . It is supposed that at the initial instant the 
system was in the state 11. 

Let us introduce the functions Fk(i) [9]: 
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k ,...,2,1,, ���� ,  (7) 

called forward variables. For these functions the next 
recurrent formula is true 
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where Pi
j are the merged model EMC transition 

probabilities defined by the formulas (5), (pi) is the EMC 
initial state distribution. 

Using the formula (8) let us find three first functions 
Fk(i): 
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The functions F4(i), F5(i) are being found similarly 

using the recurrent formula (8). 
Other functions applied for hidden model 

characteristics estimate are the functions Bk(i) called 
backward variables [9,10]  

� � � �1 1,..., | , 1, 1,k k k n n kB i P S s S s X i k n� �� � � � � �  

for which the next recurrent formula takes place 
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For the probability � �n
nP S s�  the next formulas are 

true 
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and also [9] 
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i
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for any fixed k. 
As an example of hidden merged model 

characteristics estimates, let us consider a system S, in 
which the uptime of the first and second components 
have a second-order Erlang distribution with average 
values Eα1 = 20.0 h, Eα2 = 25.0 h. Average values of 
scheduled maintenance Eτ1 and Eτ2 are 2.5 and 3.0 
hours, the average ER values Eβ1 and Eβ2 are 4.5 and 6.7 
hours, respectively. Nonrandom values of the 
permissible operating time levels are 6.0 and 10.0 hours, 
respectively. 

Let the next vector of signals be defined (2, 1, 0, 1 , 
2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1,2, 1, 2, 1, 2, 1, 0, 
1, 0, 1) (n= 30). Let us consider the next problems on 
hidden model characteristics evaluation. 

 
 

 
 Table 1.The connection function R(S|j) between the merged model EMC states and the signals. 

                    State, x
Signal, s 00 11 22 21 12 10 01 02 20

s=0 1 0 1 0 0 0 0 1 1
s=1 0 0 0 1 1 1 1 0 0
s=2 0 1 0 0 0 0 0 0 0
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1. Let us determine the probabilities of the states of 
the hidden model at the moment of emission of the 30th 
signal. Let us use the formula [9]: 

  � � ( )
| .

( )
n n

n n
n

j

F i
P X i S s

F j
� � �

�
  (12) 

Then, at the 30th step, the model was in state 21 with 
a probability of 0.3277, in state 12 with a probability of 
0.3489, in state 10 with a probability of 0.2332, and in 
state 01 with a probability of 0.0901. For other states, 
this probability is zero. 

2. Let us find the probabilities with which the hidden 
model will perform the transition to the states at the next 
step. For this let us use the formula [9]: 

1( | ) ( | ) ,jn n n n i
i

P X j s P X i s P� � � ��   (13) 

We get the following probabilities of the hidden 
model transition at the 31st step: to state 00 with a 
probability of 0.0210; in state 11 - 0.6554; in state 22 - 
0.1615; to state 21 - 0; to state 12 - 0; to state 10 - 0; to 
state 01 - 0; in state 02 - 0.0384; to state 20 - 0.1237. 

3. Let us determine the probability of the appearance 
of signals at the next step, with the help of the formula 
[9]: 

� � � � � �� ���� ���
i

nnnnnn isRsiXPssSP ||| 1111 ,    (14) 

in this case the formula (13) is used. 
We get that the probability of signal 2 appearing at 

the 31st step is 0.6554; signal 1 - 0; signal 0 - 0.3446. 

4. Let us find the probability of appearance 
(emission) of a given vector of signals. 

To do this, you can use formulas (10) - (11). 
The occurrence probability of a given vector of 

signals (2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 
1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1) with the initial parameters of 
the system S is equal to 0.00023. 

 
Table 2.The probability of the appearance of a given vector of 

signals at various permissible operating time levels. 

1 2 3
h1 h2 n

nP S s�( )
0 0 0
0 14.0 0
2.0 8.0 0.0001944
2.0 12.0 0.0002098
4.0 4.0 0.0001335
6.0 4.0 0.0001800
6.0 10.0 0.0002341
8.0 8.0 0.0002318
10.0 10.0 0.0002303
10.0 8.0 0.0002323
12.0 12.0 0.0002222
50.0 0 0
100 100 0.0001731

Table 2 shows the probability of occurrence of a 
given vector of signals depending on the value of the 
operating time. 

Table 2 shows that with an increase in the 
permissible operating time levels, the probability of the 
appearance of a given signal vector first increases, then 
decreases, which makes it possible to pose the problem 
of finding the point {h1, h2} = argmax � �nn sSP � . The 
values of one or two levels equal to zero represent the 
appearance of the signal chain under consideration as an 
impossible event, since in the limit at hi → 0 one or two 
elements are constantly on scheduled maintenance, 
making, in particular, the appearance of signal 2 
impossible, while such a signal is present in the chain. In 
the limit at hi →∞, i = 1.2, the planned maintenance is 
not carried out and the hidden model turns into the 
hidden Markov model considered in [12] based on the 
superposition of two independent alternating renewal 
processes [5]. 

5. Predicting the states of the hidden model for a 
given vector of signals. 

Table 3.The most probable states of the hidden model on its 
transitions. 

Transition 
#

1 2 3 4 5 6 7

The most 
probable 
state

11 21 22 12 11 21 11

The 
probability 
of the state

1 0.5427 0.6532 0.4024 1 0.5427 1

 
The Viterbi algorithm [9, 10] was used to find the 

most probable chain of states (Table 3). 
Using the Baum-Welsh algorithm [10], you can 

select the parameters of the hidden model (conduct 
training) so that it most closely matches the given signal 
vector. 

Trellis diagram of merged model operation is 
depicted in the Fig. 2 using for simplicity the next 
notation: 00 1# , 11 2# , 22 3# , 21 4# , 
12 5# , 10 6# , 01 7# , 02 8# , 20 9# . The 
thick line shows the most likely transitions. 

Conclusion 
In this paper, a hidden Markov model of maintenance 

by age of elements of a two-component system is 
constructed. The constructed hidden model is used to 
solve the problems of analyzing of the dynamics, 
predicting of the states of the modeled system based on 
the vector of signals obtained during its operation. 

In the future, it is planned to build hidden Markov 
models of multicomponent systems, taking maintenance 
into account. 

The results of the work can be used to analyze the 
functioning and predict the states of systems in which 
maintenance is performed. 

The work was supported by the Russian Foundation 
for Basic Research No. 18-01-00392a. 
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Fig. 2. The trellis of maximized transition probabilities for considered chain of signals. 
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