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Abstract. The problem of detecting changes in a topology of an electrical network in real time is solved. 

This paper proposes a line state detection method based on a convolutional neural network (CNN) classifier 

using phasor measurements of bus voltages and currents in transient states. 

1 Introduction 
The creation of a topological model of an electric power 

system (EPS) is a very important stage in modeling an 

EPS in real time. Errors in this model can lead to 

incorrect and potentially dangerous control actions. In 

this situation, checking the correctness of an electrical 

power network topology model is a great importance. 

Effective management of a modern power system 

with the presence of decentralized energy sources 

requires reliable methods for power distribution network 

topology detection. These methods must be supported by 

modern measuring systems provided with the phasor 

measurement units (PMUs). PMUs have the ability to 

record fast transients with high precision. Indeed, these 

events can occur in a few seconds, which hampers their 

detection by the traditional Supervisory Control And 

Data Acquisition (SCADA) systems. Time 

synchronization of geographically dispersed 

measurements provides better operational awareness 

about the network topology in real time. 

With the advent of Wide Area Measurement Systems 

(WAMS) and the consequent deployment of such 

monitoring devices, control centers are being flooded 

with massive volumes of data. PMUs provides from 10 

to several hundred samples per second, which is very 

high when compared to the traditional SCADA 

acquisition devices that sample every 2–4 seconds [1]. 

This new paradigm represents a huge amount of raw data 

collected every day. For instance, [1] refers that a single 

PMU sampling at 60 Hz can create roughly 721 MB of 

data per day, and 44 PMUs generate approximately 1 TB 

per month. Therefore, as stated here, large-scale PMU 

systems present challenges for such a volume of data 

processing. According to [2], this problem can be solved 

using techniques in the field of Artificial Intelligence, 

like Machine Learning, in particular, Deep Learning. 

These methods can be very helpful to extract features 

from raw data, and the latest machine learning 

algorithms are able to find the features themselves by 

which the input data can be classified.  

A brief introduction to Deep Learning Neural 

Networks (DLNN), and, in particular, to Convolutional 

Neural Networks (CNNs), is presented in section 1. 

Section 2 is devoted to the study of the use of CNN to 

detect line status changes in transient states with the 

presentation of research results. Conclusion concludes 

results and discusses future research. 

2 Deep Learning Neural Networks  

Deep Learning Neural Networks are becoming one of 

the most popular Machine Learning Methods for 

creating Artificial Intelligence Systems in various fields, 

such as speech recognition, natural language processing, 

computer vision, medical informatics, etc. [1]. Their 

distinctive features are a larger number of neurons in 

layers, more complex connection methods, automatic 

feature extraction, and an increase in computation power 

and access to enough data to train the algorithms [3]. 

Many research works have been done recently on DLNN 

in power systems. DLNN application in power systems 

are following: load forecasting, power system 

restoration, detection of defect or faulty equipment, 

stability assessment, disturbance and emergency control, 

cyber security, power system fault diagnosis [4], real-

time faulted line localization [5], etc.  
One of the reasons for DLNN's success is that the 

network automatically extracts important features from 

the data that are necessary to solve the problem. When 

processing large amounts of data, the neural network 

copes with feature extraction much better than the person 

himself. 

The multilayer perceptron [6] is an example of a deep 

neural network architecture. Such a network is called 

fully connected. There are other DLNN architectures, in 

particular, neocognitron, autoencoders, convolutional 

neural networks, limited Boltzmann machine, deep trust 

networks, long-short-term memory networks, driven 
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recurrent neural networks, and residual learning 

networks [7]. 

Convolutional neural networks are most suitable for 

solving the problem of detection of line status changes.

CNN classifier is preferred considering its property of 

sparse connectivity and parameter sharing [5], so we will 

focus on a more detailed presentation of these networks. 

CNNs are a special type of Feed-Forward Neural 

Networks for processing data that has grid-like topology.

The CNN structure is aimed at efficient recognition of 

the input information. The CNN receives input data, 

transforms its using a number of interconnected layers. 

The output layer represents a set of probabilities 

(estimates). Although there is no uniform way of 

designing the structure of CNN, several basic 

components are typically considered together for better 

classification accuracy in a wide range of applications. 

These components include convolutional, Rectified 

Linear Unit (ReLU), Pooling, and fully connected 

operators (Fig. 1). 

.
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Output

Fig. 1. Convolutional neural network architecture.

There are three main groups of layers: 1) input layer; 

2) feature extraction layers; 3) classification layers. 

The input layer accepts 3D signals. Feature 

extraction layers have a repeating structure: convolution 

(filter)�  activation (ReLU)�pooling. The input and 

output of each layer are called feature maps. A filter 

layer convolves its input with a set of trainable kernels. 

The convolutional layer is the core building block of 

a CNN and exploits spatially local correlation by 

enforcing a local connectivity pattern between neurons 

of adjacent layers. The connections are local, but always 

extend along the entire depth of the input volume in 

order to produce the strongest response to a spatially 

local input pattern. The convolution operation is shown 

in Fig. 2. 

1 0 0
1 0 1

1 0 0

0 1

0 1

0 1

1 0

1 1
0 1 1

0 1 1

0
0 0

0

1 1
1

1 1

4 31

Input data

Kernel

Convolution result
(feature map)

2 5 1

4 4 3

1х1 + 0х0 + 0х1 +
+ 1х0 + 1х1 + 0х0 +
+ 1х1 + 1х0 + 1х1 =

= 4
Fig. 2. The convolution operation.

The convolution input is the original data or a 

feature map calculated by another convolution. The size 

of all maps of the convolutional layer is the same and is 

calculated by the formulas [3]: 

1

1

w = mW - kW + ,

h = mH - kH + ,
�
�
�

                    (1) 

where w, h – calculated, respectively, the width and 

height of the convolution  map; mW – the width of the 

previous card; mH – the height of the previous map; kW
– kernel width; kH – kernel height. 

During convolution, the kernel moves in two 

directions – along the width and height of the input 

feature map – thus the final output is 2D (Fig. 2). The

result is the sum of the products of the kernel elements 

by the corresponding elements of the part of the input 

map. The convolution operation is mathematically 

described by the formula: 

=1 =1

( )[ ]

[ 1 1] [ ]
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x y

F × K a,b =

a + x - ,b + y - KF × x, y=��      (2) 

where F is the input feature map, K is the convolutional 

kernel, FxK is the convolution result. 

The activation function (such as sigmoid and tanh) 

introduces non-linearity into the networks and allows 

them to learn complex models. Here we applied ReLU 

(Rectified Linear Units) because it trains the neural 

networks several times faster without a significant 

penalty to generalisation accuracy. 

ReLU which is actually an activation function is 

shown here as a layer since it is so accepted in the 

literature. The linear rectification function activates the 

block if the input signal is greater than the set value. The 

function is described by the formula f (x) = max (0, x), its 

diagram is shown in Fig. 3. ReLUs are widely used in 

modern deep networks because they work well in many 

situations [3]. 
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Fig. 3. Linear rectification function

Pooling reduces the resolution of input and make it 

robust to small variations for previously learned features. 

It combines the outputs of i –1th layer into a single input 

in i th layer over a range of local neighborhood. Pooling 

layer operates on each feature map independently. Two 

common functions used in the pooling operation are: 

- Average Pooling: Calculate the average value for 

each patch on the feature map. 

- Maximum Pooling (or Max Pooling): Calculate 

the maximum value for each patch of the feature map. 

The most common approach used in pooling is max 

pooling.

The result of using a pooling layer and creating 

down sampled or pooled feature maps is a summarized 
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version of the features detected in the input. They are 

useful as small changes in the location of the feature in 

the input detected by the convolutional layer will result 

in a pooled feature map with the feature in the same 

location. This capability added by pooling is called the 

model’s invariance to local translation.
Fully connected layers are an essential component 

of CNNs. The result of the convolution and pooling 

feeds into a fully connected neural network structure that 

drives the final classification decision. The output of 

convolution/pooling is flattened into a single vector of 

values, each representing a probability that a certain 

feature belongs to a label. The fully connected part of the 

CNN network goes through its own backpropagation 

process to determine the most accurate weights. 

Training the above CNN architecture is similar to 

the MLPs. Gradient-based optimization method (error 

back-propagation algorithm [7]) is utilized to estimate 

parameters of the model. For faster convergence, the 

stochastic gradient descent is used for updating the 

parameters. The training phase has two main steps: 

propagation and weight update. Each propagation 

involves feedforward and error back-propagation passes. 

Former determines the feature maps on input vector by

passing from layer to layer until reaching the output (left 

to right in Figure 1). Latter, calculates the propagation 

errors according to the loss function for the predicted 

output (error propagates from right to left in Figure 1). 

Predicted error on each layer is used for calculating the 

derivatives by taking advantage of chain-rule of 

derivative. Once the derivatives of parameters obtained, 

the weight is updated as follows: the weight’s output 
delta and input activation are multiplied to find the 

gradient of the weight. And then, a ratio (learning rate) 

of the weight’s gradient is subtracted from the weight. 
This learning cycle is repeated until the network reaches 

a satisfactory validation error. 

Each neuron receives weights that prioritize the 

most appropriate label. Finally, the neurons “vote” on 
each of the labels, and the winner of that vote is the 

classification decision. 

3 Experiments and results
To detect  power network topology changes the CNN 

was used oriented to the IEEE 14-bus test system (Fig. 

4). 

1

2
3

4

1

2

5

7

6

8

9

16

18

11

12

19

13

20

17

Phasor measurement units

3

4

6

10

8

14

7

15

9

10

11

12

13

14

5

Fig. 4. IEEE 14-bus test system

To simulate outage/ turning on of line 500 modes 

were calculated by means of the load changes in all load 

buses in the range of 70–150 percent of the base level 

and adding to the obtained values a random value equal 

to 0–20 percent of the base load of the bus. For each 

mode the calculations of transients when there was an 

outage of one of the lines and turning on the line by an 

auto-reclosing device after three seconds were 

performed. Total 500 datasets (200 are training datasets 

and 300 as validating datasets) are employed to train the 

CNN classifier for the 14-bus power system. The 

measurement values obtained by calculations using PCC 

“RastrWin3” were used with a randomly added noise: a 
change of the voltage phase by ±0.5� and the current 

magnitude by ±0.5%. The relative error of noise is 

slightly increased, since phasor measurements contain 

not only the error of the PMU (± 0.2%), but also the 
error of the measuring transformers.

The problem of the line status detection at any 

moment of the transient process was considered. For 

this, calculations were carried out with three options of 

input datasets. We used as input datasets the bus voltage 

phase changes and the line current module changes 

reported by PMUs during the transient process. We 

generate datasets with the simulation step of 0.1 second. 

The first option. The number of input parameters for 

the CNN equal to 27. There are 7 voltage PMU 

measurements at the buses where PMUs are installed and 

20 current PMU measurements in lines incident to the 

buses where PMUs are located. 

Changes in the measurement values for one time 

slice were used (one time slice – the difference between 

measurements of the current time slice and 

measurements of the previous time slice). The input of 

the CNN is the three-dimensional matrix 1x27x1. 

The second option. Changes in the measurement 

values for two consecutive time slices were used. The 

number of input parameters for the CNN equal to 54.  

The input of the CNN is the three-dimensional matrix 

2x27x1. 

The third option. Changes in the measurement values 

from 1 to 20 time slices were used. The number of input 

parameters for the CNN varied from 27 to 540. The 

inputs of the CNN are the three-dimensional matrices 

nx27nx1, where n = 1, ..., 20. 

The calculations were carried out using a program 

developed in the programming language Julia (version 

1.4) implementing the Flux package (a machine learning 

library that also includes functions for creating CNN 

models). The number of datasets for training and testing 

of the CNN varied depending on the version of the input 

dataset. 

All options used the ReLU activation function for 

convolutional layers. The classification task is performed 

by employing a softmax logistic regression layer as the 

output layer. To update the weights when the neural 

network is train a loss function is used. The loss function 

for all tested versions is a cross entropy. The cross 

entropy with ”Adam” optimizer is used.
The calculation results with the first two options of 

the input parameters are given in Table 1 and Table 2. 
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Analysis of the accuracy of calculations and 

localization of errors showed that calculations with data 

of later time slices relative to the moment of the line 

fault show a decrease in accuracy. The error in detecting 

the line status increases for 115 kV lines (lines 11-20) 

and changes a little for 230 kV lines (lines 1-7). 

Table 1. The comparison of the results between two 

calculation options of the topology detection.

O
p

ti
o
n

Data (the 
number of 
time slices 
when there 
was the line 
outage and it 
was turned 
on by an 

auto-
reclosing 
device)

The number of 
samples

The 
number 

of 
misclas-

sified 
samples 

at 
testing

Accur
acy

calcul
ation,

%

for
training

for
testing

1

     1 6000 9000 0 100

2 12000 18000 437 97,57

3 18000 27000 1169 95,67

4 24000 36000 4043 88,77

5 30000 45000 5571 87,62

6 36000 54000 7587 85,95

7 42000 63000 9866 84,34

8 48000 72000 10858 84,92

9 54000 81000 11729 85,52

10 60000 90000 13428 85,08

2

by 2 from 2 6000 9000 7 99,92

by 2 from 3 12000 18000 347 98,07

by 2 from 4 18000 27000 1209 95,52

by 2 from 5 24000 36000 2110 94,14

by 2 from 6 30000 45000 3150 93,00

by 2 from 7 36000 54000 4463 91,55

by 2 from 8 42000 63000 6256 90,07

by 2 from 9 48000 72000 7582 89,47

by 2 from 10 54000 81000 8011 90,11

by 2 from 11 60000 90000 9486 89,46

This happens because the phase of the voltage in the 

buses where the PMUs are located changes a little, and 

small power flows along the 115 kV lines incident to 

these buses. For 230 kV lines, the error is less than 1% 

with the second option of the input parameters for the 

CNN (Table 2). 

The calculation results with the first two data sets 

suggested the third dataset version. The essence of this 

version is as follows. At each time slice, the amount of 

the input data increases by 27 parameters, and the CNN 

input is a matrix, the number of rows of which is 

increased by one in comparison with the previous 

matrix. Based on this, each time slice requires its own 

CNN architecture. At the same time, the number of 

samples for training and testing does not change (6000 

for training and 9000 for testing), and the accuracy of 

line status detection with the data of the third option is 

almost 100% (Table 3). 

Table 4 and 5 show the CNN architecture when the 

input of the CNN is the matrix 1х27х1 (one time slice) 

and the matrix 11х27х1 (eleven time slices).

The number of feature extraction layers is the same 

for both architectures, but an increase in the number of 

rows of the input data matrix in the second case made it 

possible to increase the kernel dimension for both 

convolution and pooling. Both cases are 100% accurate. 

Table 2. The number of misclassified samples in different 

emergency situations for two calculation options. 

L
n

e

First option Second option

The number of errors / relative error (%) when using 

data of:
2

time 
slice

s

5 time 
slices

10
time 
slices

3 time 
slices 
by 2

6 time 
slices 
by 2

11
time 
slices 
by 2

1 31 / 
2,58

8/ 
0,27

161/ 
2,68

0 / 0 0 / 0
35 /
0,58

2 4 /
0,33

27/ 
0,9

62/ 
1,03 

0/ 0 0 / 0 6 / 0,1

3 1 /
0,08

71/ 0
298/ 
4,97

0 / 0 0 / 0
4 /

0,07

4 29/ 
2,42

37/ 
2,37

78/ 
1,3

0 / 0
1 / 

0,03
2 /

0,03

5 39
/3,25 

72/ 
2,4

230/ 
3,83

0 / 0 0 / 0 6 / 0,1

6 38 / 
3,17

52/ 
1,73 

385/ 
6,42

0 / 0
1 / 

0,03
25 /
0,42

7 40 / 
3,33

11/ 
0,37

35/ 
0,58

0 / 0 0 / 0 0 /0

11 15 / 
1,25

351/ 
11,7

796/ 
13,27

44 / 
3,67

236 / 
7,87

869 / 
14,48 

12 59 / 
4,92

1259/ 
41,97

2928/
48,8 

61 / 
5,08

783 / 
26,1

2650 / 
44,17

13 2 /
0,17

313/ 
10,43

751/ 
12,52

1 / 
0,08

60 / 
2,0

327 / 
5,45

16 33 /
2,75

485/ 
16,17

1412/ 
23,53

12 / 
1,0

119 / 
3,97

936 / 
15,6

17 7
/0,58 

191/ 
6,37

401/ 
6,68

1 / 
0,08

30 / 
1,0

165 / 
2,75

18 35 /
2,92

966/ 
32,2

2073/
34,55

52 / 
4,33

584 / 
19,47

1020 / 
17,0

19 84 /
7,0

1443/ 
48,1

2955/ 
49,25

174 / 
14,5

1024 / 
34,13

2860 / 
47,67

20 20 /

1,67

285/ 
9,5

863/ 
14,38

2 / 
0,17

76 / 
2,53

581 / 
9,68

The number of tested samples for one line

1200 3000 6000 1200 3000 6000
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Table 3. Calculation results for the third calculation option 

after outage/turning on of line.

The number of 

time slices

Dimension of 

input data sets

Accuracy

calculation, (%)

1 1х27х1 100

2 2х27х1 99,92

3 3х27х1 99,66

4 4х27х1 100

5 5х27х1 99,98

6 6х27х1 100

7 7х27х1 99,97

8 8х27х1 99,99

9 9х27х1 100

10 10х27х1 99,99

11 11х27х1 100

12 12х27х1 99,99

13 13х27х1 99,49

14 14х27х1 99,91

15 15х27х1 99,96

16 16х27х1 99,94

17 17х27х1 99,07

18 18х27х1 99,72

19 19х27х1 99,26

20 20х27х1 99,77

Table 4. Structural parameters of the CNN for the matrix of 

input parameters 1x27x1.
 

Layers Operation Input 

dimen-

sion

Kernel Output

dimen-

sion

1st feature 

extraction 

layer

Convolu-

tion

1х27х1 1х2 1х26х6

Pooling 1х26х6 1х2 1х13х6
2nd 

feature 

extraction 

layer

Convolu-

tion

1х13х6 1х2 1х12х8

Pooling 1х12х8 1х2 1х6х8

Classifica-

tion layer

Fully 

connected 

layer

48 - 16

 
Table 5. Structural parameters of the CNN for the matrix of 

input parameters 11x27x1.

Layers Operation Input 

dimension

Kerne

l

Output

dimen-

sion

1st feature 

extraction 

layer

Convolution 11х27х1 2х2 10х26
х36

Pooling 10х26х36 2х2 5х13х
36

2nd

feature 

extraction 

layer

Convolution 5х13х36 2х2 4х12х
14

Pooling 4х12х14 2х2 2х6х1
4

Classifica-

tion layer

Fully 

connected 

layer

168 - 16

4 Conclusion

In this paper, a solution for detecting the line status

change  in a transient states through the convolutional 

neural network classifier using phasor measurements of 

bus voltages and line currents in real time is proposed. 

The important role of the joint use of PMUs and CNN in 

solving this problem is emphasized. The ability of PMU 

to record fast transients with high accuracy at the same 

time provides a large amount of data that can be 

processed so far only with the help of the latest machine 

learning algorithms and, in particular, convolutional 

neural networks.

A high accuracy (up to 100%) in determining the line 

status was obtained, regardless of the presence of noise 

in the input data. A change in the network topology is 

detected at the very beginning of the transient process 

almost instantly. The operator can identify the line status 

several times during the first seconds to make sure that 

the actions are being taken correctly.

Further areas of research include the network 

topology detection when two or more lines change status 

simultaneously.
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