
*
 Corresponding author: gotman@energy.komisc.ru

Identification of line status changes using phasor
measurements in transient states through deep learning
networks

Natalja Gotman*, Galina Shumilova

Federal Research Center "Komi Scientific Center of the Ural Branch Russian Academy of Sciences", ISE and EPN, 167000, Russia

Abstract. The problem of detecting changes in a topology of an electrical network in real time is solved.

This paper proposes a line state detection method based on a convolutional neural network (CNN) classifier

using phasor measurements of bus voltages and currents in transient states.

1 Introduction
The creation of a topological model of an electric power

system (EPS) is a very important stage in modeling an

EPS in real time. Errors in this model can lead to

incorrect and potentially dangerous control actions. In

this situation, checking the correctness of an electrical

power network topology model is a great importance.

Effective management of a modern power system

with the presence of decentralized energy sources

requires reliable methods for power distribution network

topology detection. These methods must be supported by

modern measuring systems provided with the phasor

measurement units (PMUs). PMUs have the ability to

record fast transients with high precision. Indeed, these

events can occur in a few seconds, which hampers their

detection by the traditional Supervisory Control And

Data Acquisition (SCADA) systems. Time

synchronization of geographically dispersed

measurements provides better operational awareness

about the network topology in real time.

With the advent of Wide Area Measurement Systems

(WAMS) and the consequent deployment of such

monitoring devices, control centers are being flooded

with massive volumes of data. PMUs provides from 10

to several hundred samples per second, which is very

high when compared to the traditional SCADA

acquisition devices that sample every 2–4 seconds [1].

This new paradigm represents a huge amount of raw data

collected every day. For instance, [1] refers that a single

PMU sampling at 60 Hz can create roughly 721 MB of

data per day, and 44 PMUs generate approximately 1 TB

per month. Therefore, as stated here, large-scale PMU

systems present challenges for such a volume of data

processing. According to [2], this problem can be solved

using techniques in the field of Artificial Intelligence,

like Machine Learning, in particular, Deep Learning.

These methods can be very helpful to extract features

from raw data, and the latest machine learning

algorithms are able to find the features themselves by

which the input data can be classified.

A brief introduction to Deep Learning Neural

Networks (DLNN), and, in particular, to Convolutional

Neural Networks (CNNs), is presented in section 1.

Section 2 is devoted to the study of the use of CNN to

detect line status changes in transient states with the

presentation of research results. Conclusion concludes

results and discusses future research.

2 Deep Learning Neural Networks

Deep Learning Neural Networks are becoming one of

the most popular Machine Learning Methods for

creating Artificial Intelligence Systems in various fields,

such as speech recognition, natural language processing,

computer vision, medical informatics, etc. [1]. Their

distinctive features are a larger number of neurons in

layers, more complex connection methods, automatic

feature extraction, and an increase in computation power

and access to enough data to train the algorithms [3].

Many research works have been done recently on DLNN

in power systems. DLNN application in power systems

are following: load forecasting, power system

restoration, detection of defect or faulty equipment,

stability assessment, disturbance and emergency control,

cyber security, power system fault diagnosis [4], real-

time faulted line localization [5], etc.
One of the reasons for DLNN's success is that the

network automatically extracts important features from

the data that are necessary to solve the problem. When

processing large amounts of data, the neural network

copes with feature extraction much better than the person

himself.

The multilayer perceptron [6] is an example of a deep

neural network architecture. Such a network is called

fully connected. There are other DLNN architectures, in

particular, neocognitron, autoencoders, convolutional

neural networks, limited Boltzmann machine, deep trust

networks, long-short-term memory networks, driven

E3S Web of Conferences 216, 01035 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601035

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

recurrent neural networks, and residual learning

networks [7].

Convolutional neural networks are most suitable for

solving the problem of detection of line status changes.

CNN classifier is preferred considering its property of

sparse connectivity and parameter sharing [5], so we will

focus on a more detailed presentation of these networks.

CNNs are a special type of Feed-Forward Neural

Networks for processing data that has grid-like topology.

The CNN structure is aimed at efficient recognition of

the input information. The CNN receives input data,

transforms its using a number of interconnected layers.

The output layer represents a set of probabilities

(estimates). Although there is no uniform way of

designing the structure of CNN, several basic

components are typically considered together for better

classification accuracy in a wide range of applications.

These components include convolutional, Rectified

Linear Unit (ReLU), Pooling, and fully connected

operators (Fig. 1).

.

Convolution PoolingReLU Fully connected

Input layer Feature extraction layers Classification layers

Output

Fig. 1. Convolutional neural network architecture.

There are three main groups of layers: 1) input layer;

2) feature extraction layers; 3) classification layers.

The input layer accepts 3D signals. Feature

extraction layers have a repeating structure: convolution

(filter)� activation (ReLU)�pooling. The input and

output of each layer are called feature maps. A filter

layer convolves its input with a set of trainable kernels.

The convolutional layer is the core building block of

a CNN and exploits spatially local correlation by

enforcing a local connectivity pattern between neurons

of adjacent layers. The connections are local, but always

extend along the entire depth of the input volume in

order to produce the strongest response to a spatially

local input pattern. The convolution operation is shown

in Fig. 2.

1 0 0
1 0 1

1 0 0

0 1

0 1

0 1

1 0

1 1
0 1 1

0 1 1

0
0 0

0

1 1
1

1 1

4 31

Input data

Kernel

Convolution result
(feature map)

2 5 1

4 4 3

1х1 + 0х0 + 0х1 +
+ 1х0 + 1х1 + 0х0 +
+ 1х1 + 1х0 + 1х1 =

= 4
Fig. 2. The convolution operation.

The convolution input is the original data or a

feature map calculated by another convolution. The size

of all maps of the convolutional layer is the same and is

calculated by the formulas [3]:

1

1

w = mW - kW + ,

h = mH - kH + ,
�
�
�

 (1)

where w, h – calculated, respectively, the width and

height of the convolution map; mW – the width of the

previous card; mH – the height of the previous map; kW
– kernel width; kH – kernel height.

During convolution, the kernel moves in two

directions – along the width and height of the input

feature map – thus the final output is 2D (Fig. 2). The

result is the sum of the products of the kernel elements

by the corresponding elements of the part of the input

map. The convolution operation is mathematically

described by the formula:

=1 =1

()[]

[1 1] []
kH kW

x y

F × K a,b =

a + x - ,b + y - KF × x, y=�� (2)

where F is the input feature map, K is the convolutional

kernel, FxK is the convolution result.

The activation function (such as sigmoid and tanh)

introduces non-linearity into the networks and allows

them to learn complex models. Here we applied ReLU

(Rectified Linear Units) because it trains the neural

networks several times faster without a significant

penalty to generalisation accuracy.

ReLU which is actually an activation function is

shown here as a layer since it is so accepted in the

literature. The linear rectification function activates the

block if the input signal is greater than the set value. The

function is described by the formula f (x) = max (0, x), its

diagram is shown in Fig. 3. ReLUs are widely used in

modern deep networks because they work well in many

situations [3].

0

5

5-5

-5
Fig. 3. Linear rectification function

Pooling reduces the resolution of input and make it

robust to small variations for previously learned features.

It combines the outputs of i –1th layer into a single input

in i th layer over a range of local neighborhood. Pooling

layer operates on each feature map independently. Two

common functions used in the pooling operation are:

- Average Pooling: Calculate the average value for

each patch on the feature map.

- Maximum Pooling (or Max Pooling): Calculate

the maximum value for each patch of the feature map.

The most common approach used in pooling is max

pooling.

The result of using a pooling layer and creating

down sampled or pooled feature maps is a summarized

E3S Web of Conferences 216, 01035 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601035

2

version of the features detected in the input. They are

useful as small changes in the location of the feature in

the input detected by the convolutional layer will result

in a pooled feature map with the feature in the same

location. This capability added by pooling is called the

model’s invariance to local translation.
Fully connected layers are an essential component

of CNNs. The result of the convolution and pooling

feeds into a fully connected neural network structure that

drives the final classification decision. The output of

convolution/pooling is flattened into a single vector of

values, each representing a probability that a certain

feature belongs to a label. The fully connected part of the

CNN network goes through its own backpropagation

process to determine the most accurate weights.

Training the above CNN architecture is similar to

the MLPs. Gradient-based optimization method (error

back-propagation algorithm [7]) is utilized to estimate

parameters of the model. For faster convergence, the

stochastic gradient descent is used for updating the

parameters. The training phase has two main steps:

propagation and weight update. Each propagation

involves feedforward and error back-propagation passes.

Former determines the feature maps on input vector by

passing from layer to layer until reaching the output (left

to right in Figure 1). Latter, calculates the propagation

errors according to the loss function for the predicted

output (error propagates from right to left in Figure 1).

Predicted error on each layer is used for calculating the

derivatives by taking advantage of chain-rule of

derivative. Once the derivatives of parameters obtained,

the weight is updated as follows: the weight’s output
delta and input activation are multiplied to find the

gradient of the weight. And then, a ratio (learning rate)

of the weight’s gradient is subtracted from the weight.
This learning cycle is repeated until the network reaches

a satisfactory validation error.

Each neuron receives weights that prioritize the

most appropriate label. Finally, the neurons “vote” on
each of the labels, and the winner of that vote is the

classification decision.

3 Experiments and results
To detect power network topology changes the CNN

was used oriented to the IEEE 14-bus test system (Fig.

4).

1

2
3

4

1

2

5

7

6

8

9

16

18

11

12

19

13

20

17

Phasor measurement units

3

4

6

10

8

14

7

15

9

10

11

12

13

14

5

Fig. 4. IEEE 14-bus test system

To simulate outage/ turning on of line 500 modes

were calculated by means of the load changes in all load

buses in the range of 70–150 percent of the base level

and adding to the obtained values a random value equal

to 0–20 percent of the base load of the bus. For each

mode the calculations of transients when there was an

outage of one of the lines and turning on the line by an

auto-reclosing device after three seconds were

performed. Total 500 datasets (200 are training datasets

and 300 as validating datasets) are employed to train the

CNN classifier for the 14-bus power system. The

measurement values obtained by calculations using PCC

“RastrWin3” were used with a randomly added noise: a
change of the voltage phase by ±0.5� and the current

magnitude by ±0.5%. The relative error of noise is

slightly increased, since phasor measurements contain

not only the error of the PMU (± 0.2%), but also the
error of the measuring transformers.

The problem of the line status detection at any

moment of the transient process was considered. For

this, calculations were carried out with three options of

input datasets. We used as input datasets the bus voltage

phase changes and the line current module changes

reported by PMUs during the transient process. We

generate datasets with the simulation step of 0.1 second.

The first option. The number of input parameters for

the CNN equal to 27. There are 7 voltage PMU

measurements at the buses where PMUs are installed and

20 current PMU measurements in lines incident to the

buses where PMUs are located.

Changes in the measurement values for one time

slice were used (one time slice – the difference between

measurements of the current time slice and

measurements of the previous time slice). The input of

the CNN is the three-dimensional matrix 1x27x1.

The second option. Changes in the measurement

values for two consecutive time slices were used. The

number of input parameters for the CNN equal to 54.

The input of the CNN is the three-dimensional matrix

2x27x1.

The third option. Changes in the measurement values

from 1 to 20 time slices were used. The number of input

parameters for the CNN varied from 27 to 540. The

inputs of the CNN are the three-dimensional matrices

nx27nx1, where n = 1, ..., 20.

The calculations were carried out using a program

developed in the programming language Julia (version

1.4) implementing the Flux package (a machine learning

library that also includes functions for creating CNN

models). The number of datasets for training and testing

of the CNN varied depending on the version of the input

dataset.

All options used the ReLU activation function for

convolutional layers. The classification task is performed

by employing a softmax logistic regression layer as the

output layer. To update the weights when the neural

network is train a loss function is used. The loss function

for all tested versions is a cross entropy. The cross

entropy with ”Adam” optimizer is used.
The calculation results with the first two options of

the input parameters are given in Table 1 and Table 2.

E3S Web of Conferences 216, 01035 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601035

3

Analysis of the accuracy of calculations and

localization of errors showed that calculations with data

of later time slices relative to the moment of the line

fault show a decrease in accuracy. The error in detecting

the line status increases for 115 kV lines (lines 11-20)

and changes a little for 230 kV lines (lines 1-7).

Table 1. The comparison of the results between two

calculation options of the topology detection.

O
p

ti
o
n

Data (the
number of
time slices
when there
was the line
outage and it
was turned
on by an

auto-
reclosing
device)

The number of
samples

The
number

of
misclas-

sified
samples

at
testing

Accur
acy

calcul
ation,

%

for
training

for
testing

1

 1 6000 9000 0 100

2 12000 18000 437 97,57

3 18000 27000 1169 95,67

4 24000 36000 4043 88,77

5 30000 45000 5571 87,62

6 36000 54000 7587 85,95

7 42000 63000 9866 84,34

8 48000 72000 10858 84,92

9 54000 81000 11729 85,52

10 60000 90000 13428 85,08

2

by 2 from 2 6000 9000 7 99,92

by 2 from 3 12000 18000 347 98,07

by 2 from 4 18000 27000 1209 95,52

by 2 from 5 24000 36000 2110 94,14

by 2 from 6 30000 45000 3150 93,00

by 2 from 7 36000 54000 4463 91,55

by 2 from 8 42000 63000 6256 90,07

by 2 from 9 48000 72000 7582 89,47

by 2 from 10 54000 81000 8011 90,11

by 2 from 11 60000 90000 9486 89,46

This happens because the phase of the voltage in the

buses where the PMUs are located changes a little, and

small power flows along the 115 kV lines incident to

these buses. For 230 kV lines, the error is less than 1%

with the second option of the input parameters for the

CNN (Table 2).

The calculation results with the first two data sets

suggested the third dataset version. The essence of this

version is as follows. At each time slice, the amount of

the input data increases by 27 parameters, and the CNN

input is a matrix, the number of rows of which is

increased by one in comparison with the previous

matrix. Based on this, each time slice requires its own

CNN architecture. At the same time, the number of

samples for training and testing does not change (6000

for training and 9000 for testing), and the accuracy of

line status detection with the data of the third option is

almost 100% (Table 3).

Table 4 and 5 show the CNN architecture when the

input of the CNN is the matrix 1х27х1 (one time slice)

and the matrix 11х27х1 (eleven time slices).

The number of feature extraction layers is the same

for both architectures, but an increase in the number of

rows of the input data matrix in the second case made it

possible to increase the kernel dimension for both

convolution and pooling. Both cases are 100% accurate.

Table 2. The number of misclassified samples in different

emergency situations for two calculation options.

L
n

e

First option Second option

The number of errors / relative error (%) when using

data of:
2

time
slice

s

5 time
slices

10
time
slices

3 time
slices
by 2

6 time
slices
by 2

11
time
slices
by 2

1 31 /
2,58

8/
0,27

161/
2,68

0 / 0 0 / 0
35 /
0,58

2 4 /
0,33

27/
0,9

62/
1,03

0/ 0 0 / 0 6 / 0,1

3 1 /
0,08

71/ 0
298/
4,97

0 / 0 0 / 0
4 /

0,07

4 29/
2,42

37/
2,37

78/
1,3

0 / 0
1 /

0,03
2 /

0,03

5 39
/3,25

72/
2,4

230/
3,83

0 / 0 0 / 0 6 / 0,1

6 38 /
3,17

52/
1,73

385/
6,42

0 / 0
1 /

0,03
25 /
0,42

7 40 /
3,33

11/
0,37

35/
0,58

0 / 0 0 / 0 0 /0

11 15 /
1,25

351/
11,7

796/
13,27

44 /
3,67

236 /
7,87

869 /
14,48

12 59 /
4,92

1259/
41,97

2928/
48,8

61 /
5,08

783 /
26,1

2650 /
44,17

13 2 /
0,17

313/
10,43

751/
12,52

1 /
0,08

60 /
2,0

327 /
5,45

16 33 /
2,75

485/
16,17

1412/
23,53

12 /
1,0

119 /
3,97

936 /
15,6

17 7
/0,58

191/
6,37

401/
6,68

1 /
0,08

30 /
1,0

165 /
2,75

18 35 /
2,92

966/
32,2

2073/
34,55

52 /
4,33

584 /
19,47

1020 /
17,0

19 84 /
7,0

1443/
48,1

2955/
49,25

174 /
14,5

1024 /
34,13

2860 /
47,67

20 20 /

1,67

285/
9,5

863/
14,38

2 /
0,17

76 /
2,53

581 /
9,68

The number of tested samples for one line

1200 3000 6000 1200 3000 6000

E3S Web of Conferences 216, 01035 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601035

4

Table 3. Calculation results for the third calculation option

after outage/turning on of line.

The number of

time slices

Dimension of

input data sets

Accuracy

calculation, (%)

1 1х27х1 100

2 2х27х1 99,92

3 3х27х1 99,66

4 4х27х1 100

5 5х27х1 99,98

6 6х27х1 100

7 7х27х1 99,97

8 8х27х1 99,99

9 9х27х1 100

10 10х27х1 99,99

11 11х27х1 100

12 12х27х1 99,99

13 13х27х1 99,49

14 14х27х1 99,91

15 15х27х1 99,96

16 16х27х1 99,94

17 17х27х1 99,07

18 18х27х1 99,72

19 19х27х1 99,26

20 20х27х1 99,77

Table 4. Structural parameters of the CNN for the matrix of

input parameters 1x27x1.

Layers Operation Input

dimen-

sion

Kernel Output

dimen-

sion

1st feature

extraction

layer

Convolu-

tion

1х27х1 1х2 1х26х6

Pooling 1х26х6 1х2 1х13х6
2nd

feature

extraction

layer

Convolu-

tion

1х13х6 1х2 1х12х8

Pooling 1х12х8 1х2 1х6х8

Classifica-

tion layer

Fully

connected

layer

48 - 16

Table 5. Structural parameters of the CNN for the matrix of

input parameters 11x27x1.

Layers Operation Input

dimension

Kerne

l

Output

dimen-

sion

1st feature

extraction

layer

Convolution 11х27х1 2х2 10х26
х36

Pooling 10х26х36 2х2 5х13х
36

2nd

feature

extraction

layer

Convolution 5х13х36 2х2 4х12х
14

Pooling 4х12х14 2х2 2х6х1
4

Classifica-

tion layer

Fully

connected

layer

168 - 16

4 Conclusion

In this paper, a solution for detecting the line status

change in a transient states through the convolutional

neural network classifier using phasor measurements of

bus voltages and line currents in real time is proposed.

The important role of the joint use of PMUs and CNN in

solving this problem is emphasized. The ability of PMU

to record fast transients with high accuracy at the same

time provides a large amount of data that can be

processed so far only with the help of the latest machine

learning algorithms and, in particular, convolutional

neural networks.

A high accuracy (up to 100%) in determining the line

status was obtained, regardless of the presence of noise

in the input data. A change in the network topology is

detected at the very beginning of the transient process

almost instantly. The operator can identify the line status

several times during the first seconds to make sure that

the actions are being taken correctly.

Further areas of research include the network

topology detection when two or more lines change status

simultaneously.

References
1. Cardoso P.E.A. Deep learning applied to PMU data

in power systems: Ph.D. thesis. Faculdade De

Engenharia Da Universidade Do Porto, 2017, 105

p.

2. Schmidhuber J. Deep Learning in Neural Networks:

an Overview // Neural Networks, 2015, Vol. 61, pp.

85–117. doi: 10.1016/j.neunet.2014.09.003.

3. Паттерсон Дж., Гибсон А. Глубокое обучение с
точки зрения практика / пер. с анг. М.: ДМК
Пресс, 2018, 418 с.

4. Muhammad A., Lee J.M., Hong S.W., Lee S.J., and

Lee E.H. Deep learning application in power system

with a case study on solar irradiation forecasting //

in Proc. Int. Conf. Artif. Intell. Inf. Commun.

(ICAIIC), Feb. 2019, pp. 275–279.

5. Li W.T., Deka D., Chertkov M., Wang M. Real-time

faulted line localization and PMU placement in

power systems through convolutional neural

networks // IEEE Transactions on Power Systems,

2019, Vol. 34, No. 6, pp. 4640–4651.

6. Хайкин С. Нейронные сети: полный курс. 2-е
изд., испр. / пер. с англ. М: ООО «И.Д.Вильямс»,
2006, 1104 с.

7. Созыкин А.В. Обзор методов обучения глубоких
нейронных сетей // Вестник ЮУрГУ. Серия:
Вычислительная математика и информатика,
2017, Т.6, № 3. с. 28–59.

8. Хохлов М.В., Голуб И.И. Унифицированный
подход к оптимизации размещения PMU в сети
для обеспечения надежности наблюдаемости
ЭЭС // Методические вопросы исследования
надежности больших систем энергетики: Вып.
65. Надежность либерализованных систем
энергетики / Отв. ред. Н.И. Воропай, А.Н.
Назарычев. Иркутск, 2015, с. 591–601.

E3S Web of Conferences 216, 01035 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601035

5

