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Abstract.Information about the current mode of the electric power system (EPS) is received 

by the dispatch control centers in the form of telemetry and tele-signals by the SCADA 

complexes, and from phasor measurement units (PMU) devices. Tele-measurements include 

information about the mode parameters, and the state of the switching equipment. Since the 

system of equation of state is nonlinear, the problem of state estimation is traditionally solved 

using iterative methods. This article presents the results of solving the state estimation problem 

using a method based on the Kipnis-Shamir re-linearization method, which allows solving it by 

non-iterative method. The results of the solution are given on the example of a power 

transmission line with 500 kV voltage. 
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1.Introduction 
  

The main trend in development of the modern electric 

power industry is a control intellectualization. 

Traditionally, information about the current EPS mode Y 

= [Pij, Qij, Iij, Pi, Qi] entered the dispatcher control 

centers in the form of telemetries and tele-signals [1-4]. 

 Since for monitoring the state of the entire power 

system as a whole, the telemetries from SCADA 

(Supervisory Control and Data Acquisition) are 

insufficient and contain errors, for specification of 

telemetries and calculating unmeasured parameters the 

state estimation (SE) methods are used. 

 To monitoring, analysis and operational control of 

the EPS after SE, the calculation of the steady state 

(current state) of the electric power systems (EPS) is 

performed.  

 In modern conditions the EPS control requires real-

time execution of SE of large and complex power 

systems. 

 SCADA complexes receive and process distant 

information once a second, without synchronizing 

measurements in astronomical time. New measuring 

equipment - PMU (phasor measurement units) - has been 

applied with invention of satellite communication 

systems. Unlike SCADA, PMU measurements are Y = 

[Ui, Iij, δi, φij]. 

Measuring systems for monitoring, control and 

protection of the power system (WAMS) consisting of 

PMU devices allow of obtaining a more real state of the 

power system [5-6]. 

 State estimation of the entire EPS based on the 

PMU measurements only is currently impossible due to 

the high cost of the corresponding equipment; therefore, 

they are usually installed at the most critical facilities. 

 The mathematical basis of the problem of the SE of 

EPS is the least square method. 

 

2.Traditional state estimation 

 

At classical formulation of the SE problem, the criterion  

𝜑(𝑥) = (𝑦̄ − 𝑦(𝑥̂))
𝛵
𝑅𝑦

−1(𝑦̄ − 𝑦(𝑥̂)) → 𝑚𝑖𝑛, 

is minimized, where ),( Ux  is the state vector, 

consisting of magnitudes U and phase angles δ of 

voltages of all nodes of the EPS circuit, except the basic 

node phase; 

𝑦 = 𝑓(𝑥)- measured mode parameters; 

𝑧 = 𝑓(𝑥)-  unmeasured mode parameters; 

yR  - is a diagonal matrix, the elements of which are the 

measurement dispersions [1-4]. 

 The state equations are nonlinear, therefore, the SE 

problem is solved by the iterative method, for example,
 

the weighted least-squares method. 

 At each iteration, corrections: 

    ,111

iy

T

iiy

T

ii xyyRHHRHx  
 

and the next approximation x(i+1) =xi-Δxi are calculated, 

where H is measurements Jacobi matrix. 

 The following initial information can be used as 

initial approximations of the state vector: 

 - measurements, 

 - pseudo-measurements, 

 - rated values of voltage magnitude and zero 

values of voltage phases. 

Then all unmeasured mode parameters are 

calculated through the state vector. 

To solve the SE problem, the method of test 

equations (TE) was developed and implemented in the 

form of program in [2]. The TEs are steady state 

equations. These equations include measured mode 

variables and variables calculated through measured 

ones only. 
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When PMU and SCADA measurements are used 

together, the SE problem retains all the disadvantages 

inherent in traditional state estimate; 

- problems in validation due to significant 

difference in accuracy of PMU and SCADA 

measurements; 

- bad conditionality of the Jacobi matrix and due 

to this fact, a slowing down of the convergence of the 

iterative process. 

 

3. Using of phasor measurements in 
solving of the EPS SE problem   
  

Installation of PMU in the EPS nodes allows of using 

new high-accuracy measurements. At that, the 

redundancy of measurements increases, which 

contributes to the detection of glaring errors in 

telemetries and improves the quality of the state 

estimation. The main types of measurements received 

from the PMU are magnitudes and phases of nodal 

voltages ( iU , i ) and currents ( jijiI , ) in outgoing 

lines. 

 Based on the vectors of the nodal voltages and 

currents of the outgoing lines according to the formulas 

below, the magnitudes and phases of the nodal voltages 

in neighboring node scan be calculated: 

 

     )xr(IφδsinxφδcosrIUUU ijijijijiijijiijijii

cal

j

2222 332 

 

𝛿𝑗
𝑐𝑎𝑙 = 𝛿𝑖 − 𝑎𝑟𝑐𝑡𝑔 [

𝑈𝑖 𝑠𝑖𝑛(𝛿𝑖) − √3𝐼𝑖𝑗(𝑟𝑖𝑗 𝑠𝑖𝑛(𝜙𝑖𝑗) + 𝑟𝑖𝑗 𝑐𝑜𝑠(𝜙𝑖𝑗))

𝑈𝑖 𝑐𝑜𝑠(𝛿𝑖) − √3𝐼𝑖𝑗(𝑟𝑖𝑗 𝑐𝑜𝑠(𝜙𝑖𝑗) − 𝑥𝑖𝑗 𝑠𝑖𝑛(𝜙𝑖𝑗))
] 

 

where, jiji xr , are the active and reactive resistances of 

the i-j line. 

 Besides, pseudo-measurements (PM) of power 

flows can be computed based on the PMU 

measurements. For example, pseudo-measurements of 

power overflows at the beginning of a line 𝑃𝑖𝑗
𝑃𝑀can be 

calculated as: 

 

𝑃𝑖𝑗
𝑃𝑀 = √3𝐼𝑖𝑗𝑃𝑀𝑈

𝑈𝑖𝑃𝑀𝑈
𝑐𝑜𝑠 𝜙𝑖𝑗𝑃𝑀𝑈

, 

𝑄𝑖𝑗
𝑃𝑀 = √3𝐼𝑖𝑗𝑃𝑀𝑈

𝑈𝑖𝑃𝑀𝑈
𝑠𝑖𝑛 𝜙𝑖𝑗𝑃𝑀𝑈

, 

 

where 𝐼𝑖𝑗𝑃𝑀𝑈
 is current of ij branch; 𝑈𝑖𝑃𝑀𝑈

is voltage of i-

th node; δijPMU=(δi- δj) is angle between the voltages 

vectors of i and j nodes.  

The initial information for the SE problem is 

SCADA and PMU measurements, physical and 

calculated PMU and PM of power flows. The 

measurement accuracy of the "calculated" PMU is 

almost equal to the measurement accuracy of the 

physical PMU. Accuracy of pseudo-measurements of 

power flows is significantly higher than the accuracy of    

telemetries in SCADA. This is due to the high accuracy 

of the PMU measurements. The TEs method by using 

PMU measurements also allows of checking the quality 

of SCADA measurements. 

 For example, when a PMU is installed in separate 

node, each PMU installed in the node can provide 

measuring the magnitudes and phase of the voltage in 

that node and the magnitudes and phases of currents in 

the outgoing lines. Independent voltage measurements in 

one node can be used for the validation of these 

measurements [1, 2]. 

 Iterative methods work well for state estimation, 

but these methods require an initial approximation and 

can encounter convergence problems if the initial 

approximation is too far from the actual state of the 

system. 

Large dimension of circuits, complexity and need 

for the high-speed performance require the development 

and applying of special algorithms and computational 

procedures for the SE.  

 Traditional state estimation methods don`t meet the 

speed requirements. PMU measurements are carried out 

with a high sampling rate. Therefore, it is possible to 

estimate the state of individual elements of the EPS 

(power plants, substations, electrical network zones) in 

the "rate of process" with very high accuracy. 

 Linear state estimation of EPS based on PMU 

measurements is performed in one iteration [6]. 

 In this case, the state vector and the measurement 

vector are, respectively, equal to 

 

𝑥 = [
𝑈
.

𝑖 = 𝑈𝑖
′ + 𝑗 ⋅ 𝑈𝑖

′′

𝑈
.

𝑗 = 𝑈𝑗
′ + 𝑗 ⋅ 𝑈𝑗

′′
],     𝑦 =

[
 
 
 
 
 𝑈

.

𝑖 = 𝑈𝑖
′ + 𝑗 ⋅ 𝑈𝑖

′′

𝑈
.

𝑗 = 𝑈𝑗
′ + 𝑗 ⋅ 𝑈𝑗

′′

𝐼
.

𝑖𝑗 = 𝐼𝑖𝑗
′ + 𝑗 ⋅ 𝐼𝑖𝑗

′′

𝐼
.

𝑗𝑖 = 𝐼𝑗𝑖
′ + 𝑗 ⋅ 𝐼𝑗𝑖

′′
]
 
 
 
 
 

, 

 

The measurement vector is related to the EPS state 

vector as xHy  ,where 

 

𝐻 =

[
 
 
 
  1
  0
𝑌̇𝑖𝑗 +

 −𝑌̇𝑖𝑗

    0
    1
𝑌̇𝑖0   − 𝑌̇𝑖𝑗

  𝑌̇𝑖𝑗 + 𝑌̇𝑗0]
 
 
 

 

is the Jacobi matrix. 

 The linear state vector  is calculated as: 

 

𝑥 = [𝐵𝑇𝑅−1𝐵]−1𝐵𝑇𝑅−1𝑧. 

 

4. State estimation based on re-
linearization method 
 

The SE considered in [7] is based on the Kipnis-Shamir 

relinearization method [7]. In this method measurement 

equations, which are the voltage value at the node of the 

power line and the equations for the driving power of the 

node are formulated using rectangular coordinates of the 

bus voltages. At such formulation nonlinear 

measurement equations become quadratic voltage 

polynomials [8]. Then the method uses two 

transformations of the original system to the high-

dimensional equations system with the quadratic 

variables to solve using non-iterative method. At 

accurate measurements this method gives the same 

results as the weighted least squares method. 
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 The initial data required for the method is the 

system topology, information about the mode parameters 

and measurements from the system. 

  If the transmission line parameters are expressed 

using the π-model and the measurements are voltage 

magnitudes and linear flows, then the measurement 

equations have the form [8-9]: 

 

Ui
2 = UiR

2 + UiI
2 ;    Uj

2 = UjR
2 + UjI

2; 

 

Pi,j = gi,j(UiR
2 + UiI

2 − UiRUjR) − UiIUjI)

+ bi,j(UiIUjR − UiRUjI); 

 

Qi,j = bi,j(UiR
2 + UiI

2 − UiRUjR − UiIUjI)

+ gi,j(UiRUjI − UiIUjR)

+ bs(UiR
2 + UiI

2) 

 

gij =
Rij

Zij
2 ,  bij =

Xij

Zij
2 ,  Zij

2 = Rij
2 + Xij

2  

 

where i is the sending node; node j is the active power 

receiving node, Rij, Xij, and  bs are the active resistance 

of line, reactance and conductivity to earth, respectively. 

 The nodal power equations are constructed by 

summing all the linear flow equations that come out 

from the node plus the power flowing into any external 

active conductance g or reactive conductance b 

connected to the node (for example, shunt capacitor or 

reactor). 

 

𝑃𝑖 = ∑𝑃𝑖𝑗 + 𝑔𝑖𝑈𝑖
2;    𝑄𝑖 = ∑𝑄𝑖𝑗 + 𝑏𝑖𝑈𝑖

2. 

 

where j is the set of nodes connected to node i. 

 Since these equations are linear with respect to the 

quadratic voltage terms (𝑈𝑖𝑅
2 ;  𝑈𝑖𝐼

2 ; UiRUjR, etc.), they can 

be represented in matrix form 

 

𝐴ξξ = 𝐶, 

 

where C,  ξ, Aξ –are  the vector of measured values,  the 

vector of quadratic voltage variables, and  the matrix of 

coefficients for ξ,  respectively. The vector ξ consists of 

the quadratic variables of the real and imaginary parts of 

the voltages denoted by xixj, where the indexes i and j 

are not associated with the numbers of the nodes. 

 

 

5. First transformation of variables 
 

Transformation of variables is performed, and system (4) 

is rearranged in the following form 

 

[𝐴𝐵] [
𝑌
𝑍
] = 𝐶 

 

where A contains linearly independent columns Aξ, and 

B contains the remaining columns Aξ, Y is vector of 

elements ξ corresponding to A, and Z is vector of 

elements corresponding to B. 

 Let’s denote the quadratic variables xixj in Y as y1; 

у2; , , , ; yNy, and by Ny we denote the total number of 

variables Y. Quadratic variables xixj in Z we denote as 

z1; z2; , , , ; zNz in the order and through Nz the total 

number of Z-variables. 

 In addition, all quadratic variables containing the 

imaginary component of the balancing node and the 

corresponding columns of the matrix are excluded from 

the system, in the balancing node since a zero imaginary 

component is specified. 

 The Y variables in the rearranged system can now 

be expressed in terms of Z variables and measurement 

values C: 

 

𝑌 = 𝑑 + 𝐷 ⋅ 𝑍 

 
𝑑 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶 

 
𝐷 = −(𝐴𝑇𝐴)−1𝐴𝑇𝐵 

 

 The set of equation takes the following form: 

 

[
 
 
 
 
 
 
 
𝑦1

.

..
𝑦𝑁𝑦

𝑧1.
..

𝑧𝑁𝑧 ]
 
 
 
 
 
 
 

= 𝐸 ∙ [

1
𝑧1

⋮
𝑧𝑁𝑧

] 

 
where the new matrix E is formed by combining d and D 

with the subsequent addition of the zero column and the 

unit matrix I of  Nz size. 

 

𝐸 = [

𝑑
0
⋮
0

𝐷

𝐼
] 

 

 

 In this matrix d is the only part of E that depends 

on the measured values of C. It should be noted that A 

and B are determined by the topology and parameters of 

the system, and therefore D and, accordingly, the unit 

matrix drops below it. This means that as long as the 

topological system remains unchanged, it is only 

necessary to recalculate d when a new series of 

measurements is received and the remaining parts of E 

can be taken from the previous calculations. 

 

6. Second transformation of variables 
 

At this stage combinations of paired products of 

quadratic variables are formed according to certain rules. 

Correct paired products meet the condition: 

 

sijspq = (xixj)(xpxq) = (xixp)(xjxq)= sipsjq 

 

 These pair product ratios are used to impose 

additional constraints on the unknowns so that a correct 
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solution can be obtained. For the paired products to be 

valid, the sij and spq must exist among the set of quadratic 

variables Y and  Z, and the sij and spq can not be the same 

pair as sip and sjq. For each correct paired product, one 

equation can be generated in the form: sijspq-sips0. More 

details on this can be found in [8]. 

 

7. Simulation 
  

The simulation was carried out for 350 km long 500 kV 

power transmission line (PTL) (see fig.1). In [10], 

simulation of the mode of such line was carried out by 

using the equations of the line with distributed 

parameters. 

 

 
 

Figure: Two-node π-scheme of the PTL 

 

For this example, the voltage values at both nodes are 

known. The active (P) and reactive (Q) power flux 

measurements from node 1 to node 2, are obtained from 

four measurement equations. Node 1 is set as balancing 

one, and therefore its imaginary component becomes 0, 

as a result of which three unknown voltage components 

must be determined from the four measurement 

equations. 

 OHL parameters in relative units R = 0.0046; X = 

0.04186; g = 0.014; b = 3.2. 

 The measurements are: U1 = 520.06 kV; U2 = 490 

kV; P12 = 935.18 MW; Q12 = 80.07 MVAr. 

 The results of calculation of the steady state of the 

PTL are presented in the table. 

 
Table. Results of steady-state of the PTL 

 
Bus Voltage Ang  Generation                     Load 

 Mag 

(pu) 

(deg)  Р, MW Q, 

MVAr 

Р, 

MW 

Q, 

MVAr 

1 1.042 0 935.18 80.07 0 0 

2 0.973 -22.64 0 0 900 50 

 

Branch From 

Bus 

To 

Bus 

From Bus  

Injection1 

To Bus Injection 2 

 Р, 

MW 

Q, 

MVAr 

Р, 

MW 

Q, 

MVAr 

1 1 2 935.18 80.07 -900 -50 

 

Total power losses are:    35.184 MW   362.76MVAr 

 

The bus admittance matrix is 

 

 

 

 Forming of measurement matrixes and coefficients 

C, A, B, d, D are: 

 
 























YBUSR22-   YBUSI21-   0     YBUSI11-

YBUSI12-  YBUSR12-   0    YBUSR11 

0                0           1                  

0                0          0            1       

:A
0

= 

=





















2.2954     23.6665- 0  22.0303

23.6665-  2.2954-  0   2.2954 

0               0         1              

0               0        0        1       

0
 

 

 
 

 
 

 
  

 Then the solution of the system of equations is 

represented as 

 

 
 

 Then the systems of the following equations are 

solved to find t 

 

 

,

z

z

z

At 





























0

0

2
1

1

1

1

1

 
 YBUS

2.30242 22.03152i

2.29542 23.66652i

2.29542 23.66652i

2.30242 22.03152i











C

U1M( )
2

U2M( )
2

P12

Q12

















1.08576

0.94673

9.3518

0.8007















 B

0

1

0

0

















D A
T

A 
1

 A
T

 B

0

1

0

0

















d A
T

A 
1

A
T

 C

1.08576

0.94673

1.02607

0.19032

















1

0

2.31542

22.03027

0

1

0

0

0

0

2.31542

23.66652

0

0

23.66652

2.31542















ynew C Bz

Ynew

1.08576

0.81314

1.02607

0.19032
















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The elements of this matrix are used to compose the 

matrixes k and At 

 

 
 

to solve the system 𝐴𝑡 ∙ 𝑡 = 𝑘 from which one can find t 

and, z accordingly, 

 

z1 = 0.13359 

t1 = 0.13359 

 

Passing to the original designations, we get: 

 

 

 

Conclusion 
  

The advantage of the SE based on the relinearization 

method is that it does not have the disadvantages of the 

convergence problem.  

Compared to traditional weighted least squares 

method, the non-iterative method requires more 

measurements for observability. The traditional method 

can solve cases with 3 or more measurements. This is 

because the non-iterative method tries to compute the 

solution, while the least squares method repeats in the 

direction of the solution. 

The results of applying the method on 500 kV PTL 

is presented. 
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At1 Find At1( )
0.15749
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0

0

1.17888

1.17888

0

0











At
1.17888

1.17888




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
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

xSE
3

1 0

xSE
4

z
1
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k
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
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







xSE
1

ynew
1
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2
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