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Abstract. The article discusses the results of the analysis of the static stability of complex electrical 

systems. The efficiency of the combined application of the equations of nodal voltages (ENV) and the 

Lyapunov function in quadratic form for the analysis of small oscillations of the electrical system is shown 

in the literature, which is called the Allaev method. A joint solution of the equations of nodal voltages and 

the matrix Lyapunov equation is given, which makes it possible to determine the stability conditions for the 

electrical system and identify the generator first approaching the stability limit. A study of small oscillations 

of complex electrical systems, which can be performed in full on the basis of matrix methods, successfully 

developed in recent decades, is carried out, which is associated with a sharp increase in the speed of 

computation and the amount of memory of modern computers. 

Introduction 

The highest danger that disrupts normal power supply is 

an emergency mode in the electric power system (EPS), 

called a system accident [9]. 

To prevent such an emergency mode, it is necessary to 

constantly assess the static stability of the EPS or its 

resistance to "small" fluctuations, since it is the violations 

of such stability that lead to systemic accidents with their 

negative consequences [11]. 

The problem of studying the static stability of modern 

complex electrical systems becomes more complicated 

due to the presence of weak links in their compositions, 

the presence of various control devices that prevent the 

determination of the general setting, units with different 

time constants, etc. [12]. At present, to solve practical 

problems, methods are used based on calculating the 

synchronizing power of one of the power plants of the 

system, i.e. determining the aperiodic stability under the 

assumption of the absence of self-swinging [9, 10]. 

The computational analysis of the static stability of EPS 

of varying complexity shows that the most rigorous 

theoretically, convenient for calculations and efficient in 

terms of results is the use of two fundamental methods - 

the method of Lyapunov functions in quadratic form and 

the equations of nodal voltages (ENV), which is called the 

Allaev method in the literature [1, 4]. Moreover, the 

methods for studying small oscillations taking into 

account self-swinging are complex, therefore, sufficiently 

reliable results can be obtained with a rigorous 

mathematical description of the control system for 

controlled objects using their parameters and 

characteristics based on the matrix approach [7, 8]. 

1.1 Formulation of the problem 

It is known [1-4] that the Lyapunov function in quadratic 

form for linear differential equations is the only one that 

provides both necessary and sufficient conditions for the 

stability of the system under study, when small 

disturbances arise in it. Therefore, the basis of research in 

this work is the Lyapunov function in quadratic form and 

nodal equations, and the subject of research is the 

linearized differential equations of EPS elements. The 

matrix equations of the elements of electrical systems, 

which are the main part of the EPS, are based on the 

equations of state variables, which are most widely used. 

The considered matrix equations are used to analyze 

transient processes and static stability of EPS and to 

synthesize the optimal parameters of the regulators of 

synchronous machines operating in a complex electrical 

system. 

The steady-state mode of the studied EPS is determined 

based on the equations of nodal voltages. The nodal 

equations, which have a functional relationship between 

the currents and voltages of the nodes, most fully describe 

the electrical state of the network of any complexity [5]. 

In the general case, the nodal equations can be written in 

the form [1, 5, 7]: 
*
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conductivity matrix of the system under study; I, Yi0, J* - 

matrices, respectively, of the nodal currents, the 

conductances of the connection with the balancing node, 

the current sources, which are transverse branches with 

the given conductances [13]. 

To solve the nodal equations, we will choose Newton's 

method in polar coordinates, the advantages of which 

include the quadratic convergence of iterative processes, 

the possibility of further use for solving optimization 

problems and calculating stability [5]. In addition, the 

node voltages Uj and the load angles of the generators δj, 

which are used in the Lyapunov equations, determined on 

the basis of solving the nodal equations, contain all 

information about the state of the system, no matter how 

complex it is [6].On the basis of the calculated values of 

the voltages of the generating units and units containing 

rotating machines, the positiveness of the matrices of 

Lyapunov's quadratic forms is sequentially checked. In 

essence, the task of analyzing the static stability of a 

complex EPS is reduced to a multiple study of the 

"generator - bus" circuit, which in practical calculations is 

described by an equation of the order of no more than 4-

15 [1]. 

1.2 Lyapunov function method in 
quadratic form 

In the classical case, the equations describing the 

processes in the EPS are homogeneous linear (linearized) 

differential equations and have the form [1, 2, 4, 10]: 

1dx

dt
 = a11x1 + a12x2 +   + a1nxn ; 

2dx

dt
=a21x1 + a22x2 +   + a2nxn;                                         (3) 

ndx

dt
 = an1x1+ an2x2 +  + annxn ; 

either in matrix form: 

x Ax& ,                                                                          (4) 

where 
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and хт = [x1, x2, …, xn]T- transposed vector of state 

variables. 

To determine stability, use the Lyapunov method and 

define a function in the form of a positive definite 

quadratic form 

V(x)=xTQx,                                                                       (6) 

or 

n
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Require the Lyapunov function to satisfy the requirement 

dV
W,

dt
                                                                       (8) 

where W = xTCx - arbitrary positive definite symmetric 

matrix. 

Equating expressions (7) and (8), we obtain the equation: 

ATQ+QA = –С.                                                              (9) 

Equation (9), called the matrix Lyapunov equation, 

provides the stability condition if the inequalities V> 0 

and V&<0 are simultaneously satisfied in some domain of 

the space of variables (x1, x2, ..., xn), including the origin 

[4].  

Note that both matrices Q and C are symmetric. Indeed, if 

the matrix Q is symmetric, that is, QT = Q, then 

CT =-(ATQ+QA)T =-QTA - ATQ = -(ATQ+QA)=C      (10) 

and hence the matrix C is symmetric. 

Since the matrix Q is symmetric, the Lyapunov equation 

is equivalent to the system of n (n+1)/2 linear algebraic 

equations [4]. 

According to Sylvester's theorem [4, 9], the positivity of 

the principal diagonal minors of the coefficient matrix Q 

of the quadratic form (6) is a necessary and sufficient 

condition for the stability of the system under 

consideration under small perturbations. For example, for 

a simple EPS circuit, it looks like this: 
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Analysis of violation of the condition L1=q11>0 shows 

that all types of violation of the stability of the electrical 

system at small oscillations (aperiodic violation, self-

excitation, self-swinging) are contained in q11. All other 

minors of Q are positive if q11>0. This condition is 

satisfied for an EES of arbitrary complexity [1, 7]. 

1.3 Mathematical model of the electric 
power system 

The linearized equations of the simplest EPS in the 

presence of automatic excitation regulators (AER) of 

proportional or strong action on the synchronous 

generator have the form [2, 4]: 

- equation of the relative motion of the rotor of a 

synchronous machine: 

j(d2/dt)= ‒ d(d/dt) ‒  

 - transient equation in the excitation winding: 

d(q/dt)= qe ‒ q; 

 - transient equation in the field winding: 

Te(qe/dt)= e ‒ qe ; 

 - converting element equation:                                     

Tc(e/dt)= u ‒ e; 

  - measuring element equation: 
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Tm(du/dt)= uG ‒ u; 

  - AER equation: 

е=
j

 (k0Pj Pj +k1Pj (dPj/dt)+k2Pj (d2Pj/dt2); 

where - j, d, e, c, m – constant inertia of the unit, 

time constants, respectively - field windings with an open 

winding of the stator, exciter, amplifier element, 

converting and measuring elements(Тm = Тc); , q, 

q , qe , е, u, uG – deviations of the load angle, 

transient emf, emf idling, emf on the rotor rings, voltage 

on the plates of the exciter and the voltage on the 

generator tires; Pj – mode parameters, which is used to 

control the excitation of the generator; Pd – damping 

factor; k0Pj, k1Pj, k2Pj  – gain factors for the AEC control 

channels, respectively, for the deviation, for the first and 

second derivatives of the mode parameters. Deviations of 

the regulated parameter of the generator mode or system 

are determined by the expression: 

Pj=(dPj/d)+(Pj/dq)q. 

1.4 Numerical results 

Consider the application of the equations of the nodal 

voltage and the Lyapunov function in quadratic form 

using the example of a three-node circuit (Fig. 1). As a 

balancing one, we will choose a zero node, the first and 

third nodes are generating, the second node is load.

 
Fig. 1. Schematic diagram of a three-node electrical 

system 

 

The analysis of the static stability of a complex EPS will 

be carried out on the basis of known assumptions [1, 12]: 

- when calculating the synchronizing power of any of the 

generators, the rotor angles of all other generators remain 

unchanged; 

- suppose the emf generators are constant for this mode, 

the parameters of the equivalent circuit of the electrical 

system and loads are constant, while the active 

components of the complex resistances are not taken into 

account (r = 0); 

- in the steady-state mode of operation of a complex 

system, the power of machines can be expressed through 

the intrinsic and mutual conductivity of the branches of 

the equivalent circuit of the electrical system, which are 

also considered constant. 

As is know, to study the static stability of complex 

systems, a positional mathematical model of EPS is used, 

which has the form [1, 6, 7]: 

- the system of differential equations of the relative 

motion of the rotors of synchronous generators are 

described in the form 
2
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- power equations for synchronous generators, expressed 

in terms of the intrinsic and mutual conductances of the 

equivalent circuit branches:  

P1= E2
1y11sin11+E1E2y12sin(12-12)+…+E1Eny1nsin(1n-

-1n), 

P2=E2
2y22sin22+E1E2y12sin(12-12)+…+ E2Eny2nsin(2n-

-2n), 

………………………………………………………… 

Pn = E2
nynnsinnn+

n

i j

 EiE j yijsin(ij-ij), 

where i and ij - absolute and relative load angles of 

generators; Еi – generator electromotive forces; Tj – 

constant inertia of aggregates; Pdi – generator equivalent 

damping factors; Pi – electromagnetic powers of 

synchronous generators; yii, yij – own and mutual 

conductivities of the system; iiи ij – corresponding 

padding angles.  

Below are the initial data and parameters of a complex 

electrical system (Fig. 1).  

Parameters of nodes: 

G1: PG1=300 MW; cosφG1=0.8; UG1=500 kV; Tj1=6 sec.; 

xd1=1.907; '

d1x =0.278. 

G2: PG2=200 MW; cosφG2=0.8; UG2=500 kV; Tj2=5.4 sec.; 

xd2=1.915; '

d2x =0.275. 

Nodes are interconnected by appropriate overhead 

transmission lines L1-L4.  

L1: UL1=500 kV; ℓL1=195 km; r0=0.0397 Ohm/km; 

x0=0.31 Оhm/км.  

L2: UL2=500 kV; ℓL2=115 km; r0=0.0362 Ohm/km; 

x0=0.306 Ohm/km. 

L3: UL3=500 kV; ℓL3=180 km; r0=0.0397 Ohm/km; 

x0=0.31 Ohm/km.  

L4: UL4=500 kV; ℓL4=175 km; r0=0.0397 Ohm/km; 

x0=0.31 Ohm/km. 

Load node parameters:   

PLoad=150 MW; cosφLoad=0.88; ULoad=500 kV. 

Generators are equipped with automatic excitation 

regulators that react to the deflection and the first 

derivative of the angle, as well as to the voltage deviation. 

Perform the calculation of the steady state and check the 

positivity of the first minor q11 of the matrix of the 

quadratic form Q for generating nodes. 

The results of the calculation of the steady state (modules 

of the voltage nodes and the angles of the load): 
o o oj15 j34 j23

1 2 3U 505,2e kV,  U 496,2e kV,  U 509,8e kV.  & & &   

Then, using the obtained data, solve the equation of the 

Lyapunov function in quadratic form with respect to the 

above systems of equations (9). 
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The calculation is carried out with a heavier mode - a 

gradual increase in the active load power from 

PLoad=150MW to PLoadmax=200MW, which led to an 

increase in the load angles of the generators, respectively, 

to δcr1=126o and δcr2=131.5o. 

As seen from Fig. 2, the characteristic of variation of the 

minor q11 of the first generator G1 depending on the angle 

δ first approaches the stability limit. 

 
Fig. 2 Changes of the first diagonal minor q11 of the 

matrix Q of the Lyapunov function in quadratic form 

depending on the angle δ: 

1-characteristic G1; 2-characteristic G2 

Conclusion 

1. The stability of an electrical system of any complexity 

with small deviations is characterized by the positiveness 

of the first minor of the matrix of the quadratic form q11>0 

of the Lyapunov function in the quadratic form. 

Moreover, it is shown that if q11>0, then all other minors 

of Q are positive. Therefore, the study of the stability of 

an EPS of arbitrary complexity can be limited to 

investigating only the condition q11>0. We called this 

criterion simplified [1, 7], since the positiveness of q11 

determines the positiveness of the remaining higher 

minors of the matrix, and therefore only this condition is 

considered. It is important that the condition q11>0 

contains theoretically known types of violation of the 

stability of an electrical system under small disturbances 

(aperiodic violation, self-excitation, self-swinging), 

therefore, contains both necessary and sufficient 

conditions for stability. 

2. Analytically and computationally, the i-th generator of 

a complex electrical system is the first to approach the 

stability limit. 

According to the authors, studies of small oscillations of 

an electrical system based on Lyapunov functions in 

quadratic form should be developed and carried out in the 

following directions: 

- improvement of the model of nodal voltages equations 

for joint application with the Lyapunov function in 

quadratic form;  

- development of a more accurate model of the electrical 

system; 

- development of matrix methods for aggregate and 

interconnected optimal control between stations of the 

electrical system; 

- development of an algorithm and a model for optimal 

control, assessment and synthesis of the corresponding 

control laws for EPS with the probabilistic nature of the 

initial information. 
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