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Abstract. The power systems steady-state problem are described by a system of nonlinear equations, 

and for their solution are widely used iterative techniques such as the Newton-Raphson and others. 

Recently, techniques based on the use of genetic algorithms, the theory of fuzzy sets, artificial neural 

networks have been applied to solve this problem. In this article feedforward neural networks are used 

for calculating the steady-state regimes. The modeling results were obtained with the results of 

calculations using the Newton-Raphson method. 

1 Introduction 
The power systems steady-state calculations are a very 

urgent task of the electric power industry both at the design 

stage and during its operation. The accuracy and reliability 

of the results obtained ensure the correct functioning of the 

power systems. 

As you know, the steady-state calculation is the 

determination of the parameters of the regimes with known 

circuit parameters and parameters of loads and generation 

[1]. In this case, the problem can be represented as a system 

of high-order nonlinear algebraic equations or in matrix 

form, which causes certain difficulties. Also, for its 

solution, various iterative techniques are traditionally used 

[2], which is associated with great mathematical and 

computational difficulties. In addition, the use of iterative 

techniques for operational calculations is also ineffective 

due to the large time costs associated with the 

computational cumbersomeness of these methods. 

That is why the search for the most optimal methods 

for calculating steady-state regimes is an important task. 

From this point of view, a promising direction is associated 

with the use of modern intelligent data processing tools 
such as genetic algorithms, fuzzy sets, artificial neural 

networks and other. 

Recently, techniques based on the use of such modern 

technologies as genetic algorithms [3, 4, 5], theory of fuzzy 

sets [6, 7], artificial neural networks [8, 9, 10, 11] are 

widely used for solving various energy problems. 

Given the noted in this article, 2 types of feedforward 

neural networks (feedforward and cascadeforward) are used 

for calculating steady-state regimes. 

1.1. Traditional approach to the problem 
of calculating the steady state 

At present, iterative methods (or methods of successive 

approximations) have found wide practical application in 

the calculation of power systems steady-state calculations. 

Iterative methods include: simple iteration method, Gauss-

Seidel method, Newton-Raphson method and its 

modifications, gradient method, etc [1, 2]. 

Simple iteration and Gauss-Seidel methods are not 

always sufficient to solve nonlinear systems of 

computational power equations, therefore, in practice, these 

methods are rarely used and are used to calculate the mode 

of simple electrical networks. 

From a theoretical point of view, Newton-Raphson 

method is the most attractive, but its practical application 

runs into certain difficulties. In particular, the problem of 

finding a good initial approximation, the need to solve a 

linear system of equations at each iteration step, etc. 

But despite these shortcomings, Newton-Raphson 

method is the main one for calculating steady-state regimes 

due to the high convergence rate (with good initial 

approximations, it is enough to perform 3-5 iterations) and 

are used in modern software tools like DIgSILENT 

PowerFactory, Etap, RASTR, Mustang, etc. 

1.2. About artificial neural networks  

Artificial neural networks (ANNs), usually simply called 

neural networks (NNs), are computing systems vaguely 

inspired by the biological neural networks. ANN’s basic 

processing unit is a artificial neuron, the model of which is 

shown in Fig. 1. Inputs, a transfer function, an activation 

function, a threshold, and an output. In every neuron except 

for the input neurons, signals from the previous layer (x1, 

x2,… xn) are multiplied by an associated adaptive weight 

(w1j, w2j,… wnj), which indicates the connection strength of 

the neuron with a particular input, and the transfer 

(summation) function is then applied to the weighted 

signals netj. 

 
Fig.1. The model of artificial neuron 
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This process can be mathematically expressed as: 

���� = ∑ �� ∙ 
��
�
��                   (1)

The output (oj) of the neuron is then obtained by 

applying an activation function (�) to the net input (netj). 
and added the threshold of the neuron (��) to the aggregate 

signals: 

�� = ������� +  ��                (2)

An activation function (�) is used to determine the 

output of neural network like yes or no. It maps the 

resulting values in between 0 to 1 or -1 to 1 etc.  

The most commonly used are Sigmoid or Logistic 

Activation Function, so named for their curve looks like a 

S-shape. The main reason why we use sigmoid function is 

because it exists between (0 to 1).  

�(�) = 

����                        (3) 

Hyperbolic tangent Activation Function th (x) is also 

like logistic sigmoid but better. The range of the tanh 

function is from (-1 to 1). tanh is also sigmoidal (S - 

shaped) 

�(�) = �ℎ(�) =
(������)

(������)
         (4)

ANNs can be classified into different types depending 

on the architecture and information flow procedure. There 

are one layer and multilayer networks. Among them, the 

multilayer feedforward network consisting of an input 

layer, one or more hidden layer(s), and an output layer is 

the most commonly used network, where all of the neurons 

in each layer only have connections to the neurons of 

successive layers, not to neurons in the same layer.  

To create neural networks, we use the Neural Network 

Toolbox library of the Matlab package [12], where various 

types of neural networks are implemented. In particular, 

feedforward neural network and cascadeforward neural 

network are considered (Fig. 2). The main difference 

between a cascade-directed network and a feed-forward 

network is that it has a connection from the input and each 

previous level to subsequent levels. 

1.3. Generation of statistical data for 
ANN’s modeling
To perform the necessary power systems steady-state 

calculations, a circuit was chosen that includes 5 load 

nodes, 1 generation unit and an infinite power bus (Fig. 3). 

The generating unit includes 3 generators of the CB-855 / 

235-32 brand with a total power of S = 176.5 MVA (active 

power P = 150MW; cos (fi) = 0.8). The branch data is 

presented in Table 1. 

In order to generate statistical data, the calculations of 

the steady state EES are performed using the DIgSILENT 

PowerFactory program, which is based on the Newton-

Raphson method [13]. Using this program, a large number 

of calculations were performed, in a wide range of load 

changes (50–100% of the specified) in 5 load nodes. In 

each case, the module and the voltage phase of the load 

nodes are used as the result of the steady-state calculation. 

a) feed-forward network b) cascade-directed network

Fig 2. Various types of neural networks
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Fig.3. Calculation scheme of the electric power system

Table 1. Approved quarterly voltage schedule at control points of CA UPS 

Branch Un (kV) Line type Length

(km)

R0,
ohm

X0,
ohm

B0*10-4,

sim

G – B 220 AC-400 30 0.075 0.42 0.027

B – A 220 AC-240 42 0.121 0.435 0.026

A – C 220 AC-240 31 0.121 0.435 0.026

C – Sist 220 AC-240 35 0.121 0.435 0.026

G – E 220 AC-300 45 0.096 0.429 0.0264

E – Sist 220 AC-240 46 0.121 0.435 0.026

G – D 220 AC-300 55 0.096 0.429 0.0264

D – Sist 220 AC-240 43 0.121 0.435 0.026

On the basis of the entered data and the results of 

calculations, a statistical database of 150 input-output pairs 

was formed. In this case, the input variables are the active 

and reactive powers of the load bases (PA, QA, PB, QB, PC,

QC, PD, QD, PE, QE), and the output variables are the 

module and voltage phase of the load bases (UA, dUA, UB,

dUB, UC, dUC, UD, dUD, UE, dUE).

Further, the resulting database is divided into training 

and control samples, which are necessary for training of the 

neural network and control of the trained network. The 

volume of statistics for the training and control sample can 

be changed. The proportion of 70% to 30% is taken as a 

basis. 

1.4. Selection of ANN structures 
The choice of a suitable ANN structure includes the 

choice of the number of layers, the choice of the activation 

function, the number of inputs and outputs, and the number 

of neurons in each layer.  

For our task, a three-layer feedforward network is used 

which works well enough for this task. At the same time, 

the following are considered: a feedforward neural network 

and a cascade forward neural network.

As an activation function, a hyperbolic tangent is used 

for the hidden layer, and a linear one for the output layer. 

The number of neurons in the input layer and the output 

layer is 10 based on the amount of input and output data. 

The number of neurons in the hidden layer is determined by 

the results of experiments. The best values are obtained 

when the number of neurons in the hidden layer is 20. 

1.5. Training of ANN
Feedforward neural network training is the process of 

determining the values of network weights based on 
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examples that form a training sample. In this case, the goal 

of training feedforward neural networks is to determine 

such a vector of weights w so that functional (2) takes a 

minimum value. There are many methods for solving this 

problem. 

One of the popular methods is the backpropagation 

method. Despite its widespread use, its main disadvantages 

are slow convergence and the negative impact of local 

minima. There are methods that do not have these 

disadvantages, among which the Levenberg-Marquardt 

method [14] is known, which gave the best results when 

solving the problem of calculating the steady state (Fig.4). 

Fig.4. Training process of ANN

1.6. Comparative evaluation of ANN 
modeling results 
A control sample is used to assess the quality of modeling. 

The input data of the load nodes from the control sample 

are fed to the input of the trained feedforward neural 

networks and the parameters of the steady state are 

calculated. The results obtained are compared with the 

results of calculations obtained in the DIgSILENT 

PowerFactory program using the Newton-Raphson method. 
On Tables 2-6 shows the comparison of the estimated and 

actual bus voltages obtained by ANN-based algorithm and 

conventional Newton-Raphson method for Bus 1 – Bus 5. 

The graphical comparison between the Newton-

Raphson method and the ANN-based algorithm results 

(statistic data № 4) for Bus Voltages module under 

different operating conditions are shown in Fig. 5 and for 

Bus Voltage phase in Fig. 6. 

Table 2. Comparative evaluation for Bus 1

Bus 1 Nyuton – Rafson

(N-R)

cascadeforward 

(CFNN)

feedforward 

(FFNN)

Error

(%)

U (kV) dU 

(grad)

U (kV) dU (grad) U (kV) dU 

(grad)

N-R& CFNN N-R& FFNN

U (kV) dU 

(grad)

U (kV) dU 

(grad)

P1,Q1 6,0994 1,3168 6,0992 1,3158 6,0235 1,3186 0,00 0,07 1,24 0,21

6,0484 0,3482 6,0488 0,3488 6,0164 0,3524 0,01 0,16 0,54 1,03

6,0173 1,0240 6,0171 1,0236 6,0179 1,0231 0,00 0,04 0,01 0,05

6,1035 2,0485 6,0153 2,0935 6,0162 2,3895 1,44 2,20 0,01 14,14

6,0490 1,5948 6,0172 1,5987 6,0156 1,5276 0,53 0,24 0,03 4,45
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Table 3. Comparative evaluation for Bus 2

Bus 2 Nyuton – Rafson

(N-R)

cascadeforward 

(CFNN)

feedforward 

(FFNN)

Error

(%)

U (kV) dU 

(grad)

U (kV) dU (grad) U (kV) dU 

(grad)

N-R& CFNN N-R& FFNN

U (kV) dU 

(grad)

U (kV) dU 

(grad)

P2,Q2 5,8299 -0,8551 5,8310 -0,8551 5,8388 -0,8516 0,02 -0,01 0,13 -0,40

5,8031 -1,4863 5,8024 -1,4866 5,8315 -1,4764 0,01 -0,02 0,50 -0,69

5,8322 -0,8432 5,8347 -0,8485 5,8327 -0,8436 0,04 -0,63 0,03 -0,58

5,7594 -0,9535 5,8310 -0,9947 5,8312 -0,9982 1,24 -4,32 0,00 -0,35

5,8364 -1,2123 5,8328 -1,2112 5,8312 -1,2167 0,06 -0,09 0,03 -0,45

Table 4. Comparative evaluation for Bus 3

Bus 3 Nyuton – Rafson

(N-R)

cascadeforward 

(CFNN)

feedforward 

(FFNN)

Error

(%)

U (kV) dU 

(grad)

U (kV) dU (grad) U (kV) dU 

(grad)

N-R& CFNN N-R& FFNN

U (kV) dU 

(grad)

U (kV) dU 

(grad)

P3,Q3 5,9082 -1,0172 5,9086 -1,0177 5,9144 -1,0165 0,01 -0,04 0,10 -0,11

5,8807 -1,5577 5,8808 -1,5577 5,9126 -1,5236 0,00 0,00 0,54 -2,19

5,9118 -1,3089 5,9117 -1,3089 5,9122 -1,3084 0,00 0,00 0,01 -0,04

5,8665 -1,2069 5,9103 -1,2356 5,9115 -1,2152 0,75 -2,38 0,02 -1,66

5,9026 -1,6647 5,9116 -1,6626 5,9107 -1,6658 0,15 -0,13 0,02 -0,19

Table 5. Comparative evaluation for Bus 4

Bus 4 Nyuton – Rafson

(N-R)

cascadeforward 

(CFNN)

feedforward 

(FFNN)

Error

(%)

U (kV) dU 

(grad)

U (kV) dU (grad) U (kV) dU 

(grad)

N-R& CFNN N-R& FFNN

U (kV) dU 

(grad)

U (kV) dU 

(grad)

P4,Q4 6,1067 0,8933 6,1055 0,8949 6,0597 0,8550 0,02 0,18 0,75 4,46

6,0299 0,4552 6,0920 0,4385 6,0585 0,4576 1,03 3,69 0,55 4,37

6,0595 0,7764 6,0589 0,7765 6,0585 0,7739 0,01 0,01 0,01 0,32

6,0158 1,4141 6,0584 1,4296 6,0607 1,4176 0,71 1,10 0,04 0,84

6,0230 1,2547 6,0599 1,2894 6,0598 1,2937 0,61 2,76 0,00 0,33

Table 6. Comparative evaluation for Bus 5

Bus 5 Nyuton – Rafson

(N-R)

cascadeforward 

(CFNN)

feedforward 

(FFNN)

Error

(%)

U (kV) dU 

(grad)

U (kV) dU (grad) U (kV) dU 

(grad)

N-R& CFNN N-R& FFNN

U (kV) dU 

(grad)

U (kV) dU 

(grad)

P5,Q5 6,0756 0,5984 6,0748 0,5983 6,0589 0,5996 0,01 0,02 0,26 0,21

6,1263 0,1526 6,0786 0,1565 6,0583 0,1987 0,78 2,53 0,33 27,01

6,0591 0,8548 6,0598 0,8542 6,0591 0,8548 0,01 0,07 0,01 0,07

6,0165 0,7169 6,0584 0,7619 6,0593 0,7985 0,70 6,27 0,01 4,80

6,0884 0,8265 6,0592 0,8235 6,0578 0,8985 0,48 0,35 0,02 9,10

for Bus Voltages module for Bus Voltage phase

Fig.5. The graphical comparison between the Newton-Raphson method and the ANN-based algorithm results
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2 Conclusion 
The use of feedforward neural networks for calculating the 

power systems steady-state calculations is a worthy 

alternative to traditional calculation techniques.

Compared to classical methods, calculating the steady 

state of an already trained ANN requires insignificant 

computational and time resources, which is very important 

in operational control. 

As the results of calculations have shown, in most 

cases, the calculation error is relatively small, which 

indicates a successfully trained and correctly formed ANN 

for a specific power systems schemes.

Of the two types of feedforward neural networks 

considered, when determining the voltage modulus, the 

feedforward neural network (maximum error - 0.75%) 

gives the best results, and when determining the angle of 

the cascadeforward neural network (maximum error - 

6.3%). 

At the same time, it should be noted that there is no 

possibility of universalizing the obtained feedforward 

neural networks for other EPS schemes.  
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