
RESEARCH OF FERR-RESONANCE OSCILLATIONS AT 
THE FREQUENCY OF SUBHARMONICS IN THREE-PHASE 

NON-LINEAR ELECTRIC CIRCUITS AND SYSTEMS. 

Ibadullaev M. 1*, Tovbaev A. N. 2 

1Tashkent state technical university, University street ��, Tashkent, 100095, Uzbekistan 
2Navoi State Mining Institute, Uzbekistan 

Annotation. It is known that the occurrence and existence of ferroresonant oscillations at the 

subharmonic frequency (SHC) in power transmission lines (TL) and in power supply systems is 

extremely undesirable, since they cause ferroresonant overvoltages at different frequencies. At the 

same time, there is a wide class of nonlinear electrical circuits, in which the excitation of 

autoparametric oscillations (AIC) at the frequency of the SHC forms the basis of frequency converting 

devices serving as secondary power sources. It is shown that three-phase nonlinear systems are in one 

way or another equivalent circuits for power transmission lines, the main elements of which are: 

longitudinal compensation capacitors, transverse compensation reactors, and transformers with a 

nonlinear characteristic. To study the regularities of the excitation and maintenance of SHC at a 

frequency in three-phase electro-ferromagnetic circuits (EFMC), theoretical and experimental studies 

of an equivalent model of a three-phase circuit with nonlinear inductance were carried out. For the 

analysis of the steady-state mode of the SHC at the frequency, the method of a small parameter 

(averaging) was applied. A shortened differential equation of motion for a three-phase nonlinear 

circuit is obtained. By solving them, the regions of existence of the SHC and the critical parameters of 

the chain were determined. The obtained results of theoretical research are confirmed by experimental 

studies. 

Key words: ferroresonance, self-oscillation, subharmonic, approximation, lowest 

harmonic, small parameters, ferromagnetic element. 

Introduction 
Electrical systems contain a large number of elements 

with significant inductance (generators, transformers, 

reactors, etc.). On the other hand, power lines have 

capacities to ground and between phases. Often, to 

regulate the voltage and increase the stability of 

parallel operation, additional capacitances relative to 

ground are included in the line cut. 

Combinations of such inductances and 

capacitances create a number of complex oscillatory 

circuits in the circuit of the electrical system. 

In the normal operating mode of the system, the 

capacitances and inductances of these circuits are 

shunted by the load or connected directly to the 

terminals of a powerful source so that free 

oscillations cannot develop in them. 

With various commutations in the system, part of 

the oscillatory circuits can be caused and energetic 

oscillations develop in them, leading to significant 

overvoltages [1,2,3,4,7,8,9,10,11,12]. 

A number of works [2,3,4,8,10,11,12] are devoted 

to experimental and analytical studies of the physics 

of the phenomenon of subharmonic oscillations in 

three-phase circuits, its quantitative and qualitative 

assessment depending on the parameters of the circuit 

and the applied influence. operation and design of 

power transmission lines in order to reduce their 

accident rate, as well as in the development of 

alternating current switches. 

 Analysis of the conditions for the excitation of 

subharmonic modes of three-phase nonlinear 

systems, depending on the parameters of the circuit, 

and the applied impact, allows us to identify the main 

patterns of overvoltage in power lines and possible 

measures to prevent or reduce them to permissible 

values. 

Despite the abundance of publications illuminated 

by subharmonic oscillations in three-phase circuits, 

the processes in them are illuminated on the basis of 

purely experimental data, the processes in them are 

illuminated on the basis of purely experimental data, 

a theoretical analysis was carried out for a single-

phase analogue of a three-phase circuit, which 

distorts the quantitative and qualitative side of the 

process. This is due to the solution of nonlinear 

systems of inhomogeneous differential equations, the 

right side of which has fixed phase shifts. 

The excitation conditions and the nature of the 

AIC processes in the ferroresonant circuit depend 
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mainly on the circuit parameters, on the degree of 

inductance nonlinearity, initial conditions, amplitude 

and phase of the input action. [1,9,10,11,12] 

In three and multiphase electroferromagnetic 

circuits (EFMC), the conditions for the excitation and 

maintenance of the APC also depend on the structure 

of the circuit and the methods of connecting its 

elements, as well as the nonlinear interaction of 

ferromagnetic elements (FE) in phases. 

Analysis of the conditions for the excitation of 

subgamonic oscillations in three-phase nonlinear 

systems, taking into account the parameters of the 

circuit and the applied voltage, makes it possible to 

identify the main patterns of overvoltage in power 

lines and, if possible, take measures to prevent such 

anomalous modes or mitigate their negative 

consequences. 

Theoretical analysis of the excitation of 

subharmonic oscillations at frequency ��
��. 

To study the regularities of the excitation of 

subharmonic oscillations ��
�� in three-phase 

nonlinear circuits, theoretical and experimental 

studies of an equivalent model of a three-phase 

circuit with series-connected elements with isolated 

neutral were carried out (Fig. 1).

 

 

 

 

 

 

 

 

 

 

 
The diagram shown in Fig. 1 according to 

Kirchhoff's laws is described by the following system 

of differential equations:
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where �1, �2, �3 are the fluxes of ferromagnetic 

elements. 

           i1, i2, i3 - phase currents. 

            R0 - active resistance of neutrals. 

           R, C - active resistance and 

capacitance of each phase. 
Approximating the nonlinear Weber-ampere 

characteristic of ferromagnetic elements in the form: 
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Here (and (are the coefficients of the 

approximating function 

   � = 1, 2, 3 - phase order 

 

From (1), taking into account (2), after 

transformation, we obtain a system of second-order 

nonlinear differential equations with a zero wire: 
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Fig. 1 Symmetrical three-phase EFMC with series-connected elements; 
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Derivation of truncated equations. 

 

Let us consider the process of excitation and the 

existence of SGC ��
�� in circuits with series-

connected elements with isolated neutral (Fig. 1) 

Taking into account the phase relations for the 

three-phase circuit of the subharmonic regime ��
�� by 

the averaging method [5] , shortened equations 

describing the dynamics of the system were obtained. 

Nonlinear differential equations of a three-phase 

EFMC with a zero wire (3) after the transition to a 

new time � = 3�/�  can be represented as:
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where: ��
 
small parameter  (0 < � < 1). 
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Using the method of Bogolyubov N.N. 

Metropol'skiy Yu.A. [5] and taking into account the 

phase relations ��
�

��
� �

�
�

v �� 2)1(
  for three variants 

of the phase shift in the subharmonic, the solution of 

equations (4) has the form: 
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where: �� - complex conjugation is the value of 

complex numbers; 

 �  - the order of the phases (q = 1,2) 

�� and ��� - slowly varying complex amplitudes 

of fundamental and subharmonic oscillations: 

��  Is a limited function of orders and 

Substituting (6) into (4), neglecting the order 

terms�, for we �� obtain: 

                  � � ���� HWW ����
                  (7)                                                   

         Using the following restrictions: 

                                                

0
2

1
 

0
2

1

2

0

3

2)1(
3

2

0

9

2)1(

�

�

�

�

��
�

��
� �

�

��
�

��
� �

�

�
�

�
�

� �
�

� �
�

deH

deH

vj

v

vj

v

               (8)                                           

Depending on � i.e. from the order of the phases 

of the SHC, the phase shifts between the adjacent 

phases of the three-phase system of the SHC are in 

different combinations. In particular, at � = 1, these 

shifts are0�, 40�, 80�, which corresponds to the direct 

sequence of phases in the third-order SHC. At q = 2 

are equal0�, 80�, 160� and 0�, 160�, 360� 

(0�, 40�, 160�), which corresponds to the reverse 

phase sequence. From (6) for, � = 2 we obtain the 

following truncated equations for each phase of a 

three-phase circuit with a neutral wire in complex 

amplitudes:
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Passing from complex quantities to real 

amplitudes and phases, we use the expressions:
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From (9) and (10) we obtain the following 

equations: 
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Analysis of the steady state SHC ��
��. 

The steady-state mode of the third-order SHC is 

determined from equations (11), equating to zero the 

derivatives: 

0,0,0,0 1133 ���� ���� �� ���� ��  

As a result, we obtain equations for the 

amplitude-frequency characteristics of the system. 

The regime is now determined from equations (11). 

In the case of a three-phase EFMC with a neutral 

wire:
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To determine the amplitude of the SHC, 

depending on the parameters of the system and the 

applied action, we square equations (12) and add 

them. Replacing, ���
 = �, ���

 = �,, we obtain the 

equations of curves of the second order.
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invariants for (13) are equal [8]:
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where vf -  and     vs  - are constant coefficients 

If in (15) " �/��  <  0 then equations (14) 

describe real ellipses (Fig. 2), then its positive value 

of the squares of the amplitude of the fundamental  

harmonic (��
) corresponds to the positive value 

of the squares of the amplitude of the SHC ��
�� 

(���
 ), i.e. ellipses are in the first square: � � >  0,     

� � >  0 

From equations (13), the coordinates of the 

centers of the ellipses will be:
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From (16) it follows that the coordinates of the 

center of the ellipse will shift with a change in the 

parameters of the chain, and the ellipses are rotated 

relative to the coordinate axes by an angle 

tg2�=2b/a!c=1 , independent of the parameters of the 

chain and equal to 220301 for all three phases. The 

length of the semi-axes ellipses is determined by the 

expression:
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The ratio of the semiaxes of the ellipses is 
constant, so when changing the parameters of the 
chain, the ellipses remain similar. 

It can be seen that with an increase in the 
detuning ( ), the coordinates of the centers and the 
length of the semiaxes of the ellipses increase, i.e., 
the region of existence of the SHC increases.

 

Determination of the critical parameters of the SHC��
��. 

 
It follows from (15) that for the existence of the SHC 
in the system, it is necessary that the coordinates of 
the centers and parameters of the ellipses be positive 
and greater than zero: 
 

(  - 0,3�0)2 – 7(� + 0,8�0)2 $ 0 
(  + 0,3�0)2 –7 (� + 0,82�0)2 $ 0           (18)                  

                  2 –7 (� + 0,867�0)2 $ 0    
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The critical values of the pattern in the system, at 
which third-order SHC s are excited, will be, 

respectively:
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From (19) it follows that if the resistance of the 
neutral wire is equal to zero (�0 = 0), then the 
conditions for the existence of the SHC for all three 
phases are the same and equal 

                �,�  =
 2,63 ��                                                                                                        

(20) 
Where, � =  1&3 

 
At the same time, there is no mutual influence of 

one phase on another, and the subharmonic mode in a 
three-phase system can be set for each phase 
separately. 

In the mode � =  0 � �� ' 0 and condition (18) 
transforms the form: 

 
                                                             Phase 

A:  � = 2,42 ��; 

                                                             Phase 
B:  � = 1,82 ��;                  

(21) 
                                                             Phase 

C:  � = 2,3 ��. 
It can be seen � ' 0 that if, then the conditions for 

the existence of SHC s are different for each phase, 
and the subharmonic detuning band in the first phase 
is larger than in the other two. In fig. 2 shows the 
calculated dependences of the squares of the 
amplitude of the SHC on the squares of the amplitude 
of the input action, obtained on the PC with 
variations in the parameters of the system of the 
corresponding region of existence of the SHC 
(coefficients of nonlinear inductance � = 1,2;  ! =
0,8 and at      

 � = 5Ohm, 	 =  80 ÷ 160  �F).

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure: 2. Input-output characteristics of the third-order SGK depending on the change in capacity 
 
As follows from (Fig. 2) and expressions (16), 

(17) with increasing (the subharmonic components of 
the FE flux increase and the region of their existence 
becomes wider, and when the critical value ( �) is 
reached, the oscillations are disrupted. From (19) it 
follows that the region of existence of the SHC is 
limited by some maximum and minimum values of 
the capacitance (detuning) (Fig. 2) If the resistance of 
the neutral wire is R0=0 (�0=0), then the amplitudes 
of the SHC in three phases are the same, and with 
increasing R0 they become different. 

In the first phase, with an increase in the 
resistance of the neutral wire, the subharmonic 
components of the magnetic flux decrease, while in 
the other two phases they increase. When R0 reaches 
a certain critical value, the coordinates of the center 
of the ellipses also contract to zero, which 
corresponds to the breakdown of the SGC. (Family of 
curves of ellipses at� =  5 Ohm,  	 =   120 "F, 

��  =  0 ÷  15Ohm). With an increase in the R 
chain, the region of existence of SHC narrows, while 
the amplitude of SHC decreases in one phase and 
increases in the other two. When the resistance value 
in the first, second and third phases reaches a certain 
critical value (�#$ =  15  Ohm), then the coordinates 
of the centers of the ellipses become zero (%, & = 0), 
which corresponds to the breakdown of oscillations 
in all three phases. Here, a family of curves is plotted 
at �� = 2  Ohm, 	 = 120�F, � = 0 ÷  15 Ohm. 

 
Experimental studies of SHC 
excitation�'

�� in three-phase 
ferroresonant circuits. 

 
Theoretical analysis and the results of mathematical 
modeling on a computer have shown that third-order 
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SHC in symmetric three-phase EFMC can arise at 
certain ratios of the circuit parameters and applied 
voltage and are limited to a certain region of 
existence. In most cases, third-order SHC s are 
excited “rigidly” after switching processes and are 
accompanied by an abrupt change in currents, 
voltages and violation of the symmetry of the system. 

Studies show that in circuits with a neutral wire, 
third-order SHC s can exist in one, two or 

simultaneously in three phases, and in circuits 
without a neutral wire, in most cases, simultaneously 
in three phases with different options for phase shifts 
between adjacent phases. The likelihood of third-
order SHC occurrence in phases with different 
variants of phase shifts mainly depends on the initial 
conditions, circuit parameters, applied voltage, the 
degree of nonlinearity of ferromagnetic elements, as 
well as on the switching conditions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To obtain reliable results, all experiments were 

carried out repeatedly at various values of the 
parameters and the magnitude of the mains voltage 
that affect the excitation and maintenance of the 
SHC. 

In (Fig. 3,4), the regions of existence of the SHC  
�*

�� in a three-phase circuit are shown when the 
parameters of the circuit and the applied voltage 

change and the failure of the SHC when the active 
resistance of the circuit changes. The oscillogram of 
the stress curves on the SHC �*

�� capacitance is 
shown in (Fig. 5). 

The obtained experimental characteristics 
correspond to the theoretical calculated data and the 
critical values of the circuit parameters

. 

       
 
 
                Fig. 5. Oscillograms of the voltage in the capacitor of the SHC �*

�� in a three-phase EFMC. 

 
Conclusion

1. SHC in three-phase nonlinear circuits and 
systems are excited at certain ratios of circuit 
parameters, input voltage and nonlinearities of 
ferromagnetic elements, both in “soft” and “hard” 
modes and is limited to a certain region of existence. 

2.In a three-phase ferroresonant circuit, the 
excitation of SHC and the nature of the transient 
process depend on the structure and methods of 
connecting the circuit elements and on the initial 
conditions, as well as the amplitude-phase 
interactions of frequencies and nonlinear interactions 
of individual phases. 
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3.The excitation of self-oscillations in one phase 
causes the corresponding reactions of other phases 
and, accordingly, the breakdown of oscillations in 
any phase is reflected in all other phases. 

4.When self-oscillations are excited at higher and 
lower frequencies, the symmetry of the system is 
violated and significant currents and voltages appear 
in the phases, linear and neutral wires, as well as on 
individual circuit elements. 

5. SHC in three-phase ferroresonant circuits are 
excited with different variants of phase shifts and 
form asymmetric systems of direct, reverse, zero 
sequence. 
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