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Abstract. The article presents the differential equations of a synchronous generator in phase coordinates 

and in the coordinate system (d, q). In addition, differential equations of synchronous machines with 

longitudinal-transverse excitation and a block diagram based on these equations are given. The system of 

differential equations is solved by the operator method. On the basis of a system of differential equations 

using the Simulink Matlab program, a structural diagram was created and a graph of the self-swinging 

processes taking place in synchronous machines with conventional and longitudinal-transverse excitation 

was obtained. On the basis of the obtained graph, the processes of self-swinging of synchronous 

generators with traditional and longitudinal and transverse excitation are compared. 

Introduction 

The relevance of the topic lies in the fact that the 

determination of the static and dynamic stability of 

synchronous generators of medium and high power in 

laboratory conditions using these generators requires a lot 

of money and time. To save the necessary funds and time, 

it is advisable to conduct research on mathematical 

models of synchronous generators of medium and high 

power. In addition, the development of biaxial 

synchronous generators with magnetic axis control and 

their use in power plants is currently underway [8,9]. 

The static and dynamic stability of synchronous 

generators with longitudinal-transverse excitation is a 

poorly studied area, and the study of this area is useful for 

studying the stability of generators by developing 

differential equations for synchronous generators with 

biaxial excitation. 

To improve the performance and energy efficiency of 

synchronous machines, two coils are placed on the rotor 

at a distance of 90 degrees from each other. When we use 

a synchronous machine with biaxial excitation, it will 

give us the opportunity to control the direction of the 

magnetic flux vector, increase the static and dynamic 

stability of the machine and more effectively dampen the 

vibration of the rotor under alternating and shock loads 

[7]. 

The aim of the work is to study the effect of an additional 

excitation coil on the transverse axis on the self-swinging 

processes of synchronous machines with longitudinal-

transverse excitation using a mathematical model and 

comparison with the self-swinging processes of a 

traditional synchronous generator. 

1.1 Construction of mathematical equations 
for traditional synchronous machines: 

When constructing differential equations for synchronous 

machines, we take into account the following 

assumptions: 

1) the magnetic permeability of the steel core of the 

synchronous machine is infinite; 

2) The stator and rotor magnetic fields are sinusoidally 

distributed along the air gap; 

3) the phase windings are symmetrical; 

4) Damping rods are symmetrical about the rotor axis. 

 
Fig 1.1. View of a salient-pole synchronous machine in a) phase 

coordinate system (A, B, C) and b) rotor coordinate system (d, 

q) 
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According to the stator equation, machine voltages (Fig. 

1.1, a) are as follows [1]: 

 

𝑈𝐴 = 𝑖𝐴𝑟𝑠 +
𝑑𝛹𝐴

𝑑𝑡
;

𝑈𝐵 = 𝑖𝐵𝑟𝑠 +
𝑑𝛹𝐵

𝑑𝑡
;

𝑈𝐶 = 𝑖𝐶𝑟𝑠 +
𝑑𝛹𝐶

𝑑𝑡
;}
 
 

 
 

                              (1.1) 

 

where iA, iB, iC - instantaneous values of phase currents; rs 

is the active resistance of the stator phase winding; 𝛹A, 

𝛹B, 𝛹C - flux linkage of phase stator windings. 

 

 
Fig 1.2. Synchronous generator motion parameters. 

 

The stress equations along the axes (d, q) for the damper 

winding and the excitation winding shown in (Fig1.1, b) 

are as follows [2]: 

 

𝑈𝑓 =
𝑑𝜓𝑓

𝑑𝑡
+ 𝑟𝑓𝑖𝑓

0 =
𝑑𝜓𝐷𝑑

𝑑𝑡
+ 𝑟𝐷𝑑𝑖𝐷𝑑

0 =
𝑑𝜓𝐷𝑞

𝑑𝑡
+ 𝑟𝐷𝑞𝑖𝐷𝑞}

 
 

 
 

                            (1.2) 

where Uf is the voltage across the excitation winding; if, 

iDd, iDq are the currents of the excitation and damper 

windings along the d and q axes; rf, rDd, rDq are the active 

resistances of the excitation and damper coils along the d 

and q axes; 𝛹f, 𝛹Dd, 𝛹Dq - flux linkages of the excitation 

and damper coils. along the d and q axes. 

Flux linkage system of equations of a synchronous 

machine [3]: 

 
𝛹𝐴 = 𝐿𝐴𝑖𝐴 +𝑀𝐴𝐵𝑖𝐵 +𝑀𝐴𝐶𝑖𝐶 +𝑀𝐴𝑓𝑖𝑓 +𝑀𝐴𝐷𝑑𝑖𝐷𝑑 +𝑀𝐴𝐷𝑞𝑖𝐷𝑞;

𝛹𝐵 = 𝑀𝐴𝐵𝑖𝐴 + 𝐿𝐵𝑖𝐵 +𝑀𝐵𝐶𝑖𝐶 +𝑀𝐵𝑓𝑖𝑓 +𝑀𝐵𝐷𝑑𝑖𝐷𝑑 +𝑀𝐵𝐷𝑞𝑖𝐷𝑞;

𝛹𝐶 = 𝑀𝐶𝐴𝑖𝐴 +𝑀𝐶𝐵𝑖𝐵 + 𝐿𝐶𝑖𝐶 +𝑀𝐶𝑓𝑖𝑓 +𝑀𝐶𝐷𝑑𝑖𝐷𝑑 +𝑀𝐶𝐷𝑞𝑖𝐷𝑞;

𝛹𝑓 = 𝑀𝑓𝐴𝑖𝐴 +𝑀𝑓𝐵𝑖𝐵 +𝑀𝑓𝐶𝑖𝐶 + 𝐿𝑓𝑖𝑓 +𝑀𝑓𝐷𝑑𝑖𝐷𝑑;                       

𝛹𝐷𝑑 = 𝑀𝐷𝑑𝐴𝑖𝐴 +𝑀𝐷𝑑𝐵𝑖𝐵 +𝑀𝐷𝑑𝐶𝑖𝐶 +𝑀𝐷𝑑𝑓𝑖𝑓 + 𝐿𝐷𝑑𝑖𝐷𝑑;         

𝛹𝐷𝑞 = 𝑀𝐷𝑞𝐴𝑖𝐴 +𝑀𝐷𝑞𝐵𝑖𝐵 +𝑀𝐷𝑞𝐶𝑖𝐶 +𝑀𝐷𝑞𝑓𝑖𝑓 + 𝐿𝐷𝑞𝑖𝐷𝑞;           }
  
 

  
 

  (1.3) 

 

where L and M - inductance and mutual inductance of 

different coils and MAB = MBA; MfA = MAf; MDdA = MADd 

and so on. Lf is the inductance of the field coil; LDd, LDq - 

longitudinal and transverse inductance of the damper coil. 

The inductance and mutual inductance of the phase 

windings is a periodic function of the angle between the 

longitudinal axis of the machine and the axes of phase A: 

 
𝐿𝐴 = 𝐿0 + 𝐿2𝑐𝑜𝑠2𝜃;                    

𝐿𝐵 = 𝐿0 + 𝐿2 cos (2𝜃 +
2𝜋

3
) ;      

𝐿𝐶 = 𝐿0 + 𝐿2 cos (2𝜃 +
4𝜋

3
) ;       

𝑀𝐴𝐵 = 𝑀0 +𝑀2 cos (2𝜃 −
2𝜋

3
) ;

𝑀𝐴𝐶 = 𝑀0 +𝑀2 cos (2𝜃 +
2𝜋

3
) ;

𝑀𝐵𝐶 = 𝑀0 +𝑀2 cos 2𝜃.               }
 
 
 
 

 
 
 
 

                     (1.4) 

 

where L0 = 2M0 and L2 = M2, the coils are arranged 

symmetrically. 

The mutual inductance between the phase windings and 

the excitation winding and the damper windings is as 

follows: 
𝑀𝐴𝑓 = 𝑀𝐴𝑓𝑑𝑐𝑜𝑠𝜃;                       

𝑀𝐵𝑓 = 𝑀𝐴𝑓𝑑 cos (𝜃 −
2𝜋

3
) ;       

𝑀𝐶𝑓 = 𝑀𝐴𝑓𝑑 cos (𝜃 +
2𝜋

3
) ;        

𝑀𝐴𝐷𝑑 = 𝑀𝐴𝐷𝑑 cos 𝜃 ;                   

𝑀𝐵𝐷𝑑 = 𝑀𝐴𝐷𝑑 cos (𝜃 −
2𝜋

3
) ;    

𝑀𝐶𝐷𝑑 = 𝑀𝐴𝐷𝑑 cos (𝜃 +
2𝜋

3
) ;      

𝑀𝐴𝐷𝑞 = 𝑀𝐴𝐷𝑞 sin 𝜃 ;                    

𝑀𝐵𝐷𝑞 = 𝑀𝐴𝐷𝑞 sin (𝜃 −
2𝜋

3
) ;      

𝑀𝐵𝐷𝑞 = 𝑀𝐴𝐷𝑞 sin (𝜃 −
2𝜋

3
) ;      

          }
 
 
 
 
 
 

 
 
 
 
 
 

                     (1.5) 

 

where MAfd, MADd, MADq are the mutual inductances of the 

phase A coil and the excitation coil when the d, q axes 

and the damper contours coincide. 

The reason for the difficulty in solving the system of 

equations 1.4 and 1.5 is that inductance and mutual 

inductance are a periodic function of the rotor state. 

To exclude periodic coefficients, we write the system of 

equation in fixed coordinates (d, q) relative to the rotor: 

𝑈𝑠𝑑 = 𝑖𝑠𝑑𝑟𝑠 +
𝑑𝜓𝑑
𝑑𝑡

− 𝜔𝑠(1 − 𝑠𝑀)𝜓𝑞;

𝑈𝑠𝑞 = 𝑖𝑠𝑞𝑟𝑠 +
𝑑𝜓𝑞

𝑑𝑡
− 𝜔𝑠(1 − 𝑠𝑀)𝜓𝑑;

𝑢𝑓 =
𝑑𝜓𝑓

𝑑𝑡
+ 𝑟𝑓𝑖𝑓

0 =
𝑑𝜓𝐷𝑑
𝑑𝑡

+ 𝑟𝐷𝑑𝑖𝐷𝑑

0 =
𝑑𝜓𝐷𝑞

𝑑𝑡
+ 𝑟𝐷𝑞𝑖𝐷𝑞

𝑀Э =
3

2
(𝛹𝑑𝑖𝑠𝑑 − 𝛹𝑞𝑖𝑠𝑞)

𝐽𝜔𝑠
𝑑𝑠𝑀
𝑑𝑡

= 𝑀МEСH −𝑀𝐸 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                        (1.6) 

 

where sM = sM=(ωr-ωs)/ωs - slip; J - moment of inertia; 

MMECH - mechanical torque on the shaft; ME - is the 

electromagnetic moment of the machine. 
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The system of equation for the stator and rotor circuits is 

as follows: 

 
𝜓𝑑 = 𝐿𝑠𝑑𝑖𝑠𝑑 +𝑀𝐴𝑑(𝑖𝑓 + 𝑖𝐷𝑑)

𝜓𝑞 = 𝐿𝑠𝑞𝑖𝑠𝑞 +𝑀𝐴𝑞𝑖𝐷𝑑

𝜓𝑓 = 𝐿𝑓𝑖𝑓 +𝑀𝐴𝑑𝑖𝑑 + 
3

2
𝑀𝐴𝑑𝑖𝑠𝑑

𝜓𝐷𝑑 = 𝐿𝐷𝑑𝑖𝐷𝑑 +
3

2
𝑀𝐴𝑑𝑖𝑠𝑑 + 𝑀𝐴𝑑𝑖𝑓

𝜓𝐷𝑞 = 𝐿𝐷𝑞𝑖𝐷𝑞 +
3

2
𝑀𝐴𝑞𝑖𝑠𝑞 }

  
 

  
 

                (1.7) 

 

 

where Lsd, Lsq is the stator winding inductance along the 

longitudinal and transverse axes; MAd, MAq - mutual 

inductance of any double circuit along the longitudinal 

and transverse axes of the machine. 

2. Mathematical equations of a synchronous 
generator with longitudinal-transverse excitation 
are constructed as follows: 

The differential equations of a synchronous machine with 

double axis excitation are constructed as follows: 

 
𝑈𝑑 = 𝑟𝑠𝑖𝑑 + 𝑝𝛹𝑑 −𝛹𝑞𝜔

𝑈𝑞 = 𝑟𝑠𝑖𝑞 + 𝑝𝛹𝑞 + 𝛹𝑑𝜔

𝑈𝑓𝑑 = 𝑟𝑓𝑑𝑖𝑓𝑑 + 𝑝𝛹𝑓𝑑
𝑈𝑓𝑞 = 𝑟𝑓𝑞𝑖𝑓𝑞 + 𝑝𝛹𝑓𝑞
0 = 𝑟𝐷𝑑𝑖𝐷𝑑 + 𝑝𝛹𝐷𝑑
0 = 𝑟𝐷𝑞𝑖𝐷𝑞 + 𝑝𝛹𝐷𝑞

𝑀Э =
3

2
(𝛹𝑑𝑖𝑠𝑑 −𝛹𝑞𝑖𝑠𝑞)

𝐽𝑝𝜔 = 𝛹𝑑𝑖𝑞 −𝛹𝑞𝑖𝑑 −𝑀МЕCH}
 
 
 
 

 
 
 
 

                    (2.1) 

 

 The flux linkage of the circuits of a synchronous machine 

with double excitation is calculated as follows: 

 
𝛹𝑑 = 𝑥𝜎𝑖𝑑 + 𝑥𝑎𝑑(𝑖𝑑 + 𝑖𝑓 + 𝑖𝐷𝑑) = 𝑥𝜎𝑖𝑑 +𝛹𝛿𝑑                   

𝛹𝑞 = 𝑥𝜎𝑖𝑞 + 𝑥𝑎𝑞(𝑖𝑑 + 𝑖𝐷𝑞) = 𝑥𝜎𝑖𝑞 +𝛹𝛿𝑞                              

𝛹𝑓𝑑 = 𝑥𝜎𝑓𝑑𝑖𝑓𝑑 + 𝑥𝑎𝑑(𝑖𝑑 + 𝑖𝑓𝑑 + 𝑖𝐷𝑑) = 𝑥𝜎𝑓𝑑𝑖𝑓𝑑 +𝛹𝛿𝑑     

𝛹𝑓𝑞 = 𝑥𝜎𝑓𝑞𝑖𝑓𝑞 + 𝑥𝑎𝑞(𝑖𝑞 + 𝑖𝑓𝑞 + 𝑖𝐷𝑞) = 𝑥𝜎𝑓𝑞𝑖𝑓𝑞 +𝛹𝛿𝑞       

𝛹𝐷𝑑 = 𝑥𝜎𝐷𝑑𝑖𝐷𝑑 + 𝑥𝑎𝑑(𝑖𝑑 + 𝑖𝑓𝑑 + 𝑖𝐷𝑑) = 𝑥𝜎𝐷𝑑𝑖𝐷𝑑 +𝛹𝛿𝑑  

𝛹𝐷𝑞 = 𝑥𝜎𝐷𝑞𝑖𝐷𝑞 + 𝑥𝑎𝑑(𝑖𝑞 + 𝑖𝐷𝑑) = 𝑥𝜎𝐷𝑞𝑖𝐷𝑞 +𝛹𝛿𝑞               }
 
 
 

 
 
 

   (2.2) 

 

From the system of equations 2.1 and 2.2 we find the flux 

linkage of the contours [4]: 

 

𝛹𝑑 = (𝑥𝜎𝑖𝑑 +𝛹𝛿𝑑) =
1

𝑝
(𝑈𝑑 + 𝛹𝑞𝜔 − 𝑟𝑠𝑖𝑑)

𝛹𝑞 = (𝑥𝜎𝑖𝑞 + 𝛹𝛿𝑞) =
1

𝑝
(𝑈𝑞 − 𝛹𝑑𝜔 − 𝑟𝑠𝑖𝑞)

 𝛹𝑓𝑑 = (𝑥𝜎𝑓𝑑𝑖𝑓𝑑 + 𝛹𝛿𝑑) =
1

𝑝
(𝑈𝑓𝑑 + 𝑟𝑓𝑑𝑖𝑓𝑑)

   𝛹𝑓𝑞 = (𝑥𝜎𝑓𝑞𝑖𝑓𝑞 + 𝛹𝛿𝑞) =
1

𝑝
(𝑈𝑓𝑞 + 𝑟𝑓𝑞𝑖𝑓𝑞)  

𝛹𝐷𝑑 = (𝑥𝜎𝐷𝑑𝑖𝐷𝑑 +𝛹𝛿𝑑) = −
1

𝑝
𝑟𝐷𝑑𝑖𝐷𝑑

𝛹𝐷𝑞 = (𝑥𝜎𝐷𝑞𝑖𝐷𝑞 +𝛹𝛿𝑞) = −
1

𝑝
𝑟𝐷𝑞𝑖𝐷𝑞 }

 
 
 
 

 
 
 
 

    (2.3) 

 

The difference between the systems of equations 1.6 and 

2.1 is that in the system of equations 2.1 there is an 

equation for the excitation winding along the d and q 

axes, in the system of equations 1.6 there is no flux 

linkage - 𝛹fq. In the system of equations 2.1, the flux 

linkage - 𝛹fq for the second axis q is also specified. 

There are two methods for solving differential equations 

of electrical machines: analytical and operator. The 

analytical method is mainly used when solving linear 

equations, while the operator method is widely used when 

solving nonlinear equations. The above differential 

equations of our synchronous generators are non-linear 

because of the saturation of the magnetic circuit. 

Self-swinging is an electromechanical instability of a 

synchronous generator that goes out of synchronism due 

to a change in the rotation speed and deflection angle of 

the rotor during operation of the synchronous generator. 

Self-swinging of a synchronous generator can occur for 3 

reasons [5]: 

a) the presence of a large active resistance in the stator 

circuit; 

b) the presence of an insensitive zone of the device for 

automatic regulation of excitation and its delayed 

response; 

c) automatic regulation of excitation due to incorrect 

device settings. 

Below is a block diagram for the system of equations 2.1 

and 2.3 in the Simulink Matlab program to study the 

process of self-swinging of a synchronous generator with 

longitudinal-transverse excitation during incorrect 

adjustment of excitation control [6]: 

 

 
Fig 2.1. Block diagram in the Simulink Matlab program based 

on the system of equations 2.1 and 2.3 of a synchronous 

machine with longitudinal-transverse excitation. 
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Fig 2.2. The graph of the self-swinging process with an 

incorrectly tuned device for automatic regulation of the 

excitation of synchronous generators with traditional excitation. 

 

 
 

 
Fig 2.3. The graph of the self-swinging process with incorrect 

adjustment of the automatic excitation regulator of synchronous 

generators with longitudinal-transverse excitation 

Conclusion 

1. According to the results obtained (Fig.2.2), in a 

traditional synchronous generator, during incorrect 

tuning, the automatic regulator device excitation at the 

beginning of the self-swinging process, the stator current 

exceeds 4 times the nominal current and from the graph 

of the rotor deflection angle it can be seen that the 

traditional synchronous generator comes out out of 

synchronicity due to an increase in the amplitude of the 

rotor oscillation. 

2. During the self-swinging of synchronous generators 

with longitudinal-transverse excitation with incorrect 

adjustment of the automatic excitation control device 

(Fig-2.3), the stator current increases 1.5 times and it was 

noticed that in a synchronous generator with longitudinal-

transverse excitation due to a decrease in amplitude 

fluctuations in the rotor deflection angle, the self-

swinging process decreases and turns into synchronism. 

3. In synchronous generators with longitudinal-transverse 

excitation, static and dynamic stability is much higher 

than that of traditional synchronous generators due to the 

presence of additional excitation coils and good 

electromagnetic coupling of the stator and rotor and the 

possibility of changing the magnetization angle in them. 

References 

1. Kopilov, I.P.  Matematicheskoe  modelirovanie  

elektricheskix mashin : ucheb. dlya vuzov / I.P. Kopilov. 

– M. : Vissh. shk., 2001. – 327 s. 

2. V.A. Denisov, M.N. Tret'yakova. Teoriya i perexodnix 

prosessi elektromagnitnix ustroystv i 

elektromexanicheskiy preobrazovateley energii. 

Elektronnoe uchebnoe posobie. FGBOU VPO 

“Tol'yattinskiy gosudarstvenniy universitet ” 2014. – 108 

s 

3. German-Galkin,  S.G.  Matlab&Simulink.  

Proektirovanie  mexatronnix sistem na PK / S.G. German-

Galkin. – SPb. : KORONA-Vek, 2008. – 368 s. 

4. M.M. Fayziev, N.A. Kurbanov, A.B. Imomnazarov, 

B.S. Bobonazarov, A.E. Bekishev, Modelirovanie 

neyavnopolyusnnogo sinxronnogo generatora v Matlab. – 

Moskva. Vestnik nauki i obrazovaniya 2017 №5(29) 

Tom1, str10–14. 

5. Pirmatov N.B, Bekishev A.E, Kurbanov N.A. 

Modelirovaniya samoraskachivaniya sinxronnogo 

generatora v srede Simulink Matlab. Tendensii i 

Perspektivi Razvitiya nauki i obrazovaniya v usloviyax 

globalizasii. –Pereyaslav-Xmel'niskiy. 2018 №42, str 

585-589. 

6. Toirov O.Z., Bekishev A.E., Taniev M.X. Issledovanie 

kolebatel'noy ustoychivosti sinxronnix generatorov v 

srede MATLAB // Problemi informatiki i energetiki. – 

Tashkent, 2019. №5. - S. 70-77. 

7. Pirmatov N.B., Axmatov M.G., Kamalov I.K. 

Issledovanie raboti sinxronnogo dvigatelya s 

vozbujdeniem po prodol'noy i poperechnoy osyam pri 

udarnoy nagruzke. Elektrichestvo. – Moskva, 2003. №2. - 

S.64-65. 

8. Xrushev Yu.V., Zapodovnikov K.I., Yushkov A.Yu.. 

Elektromexanicheskie perexodnie prosessi v 

elektroenergeticheskix sistemax. – Tomsk: Tomskogo 

politexnicheskogo universiteta. 2012. - S.160. 

9. Dmitriy Bystrov, Toirov Olimjon, Mustafakulova 

Gulzoda, Yakubova  Dilfuza,  Fuzzy Systems for 

Computational Linguistics and Natural Language // 

NISS2020: Proceedings of the 3rd International 

Conference on Networking, Information Systems & 

Security, March 2020, Morocco, Article No.: 54, P.1–3. 

https://doi.org/10.1145/3386723.3387873 

E3S Web of Conferences 216, 01116 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601116

4


