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Abstract. Source Term Inversion (STI) is of great significance to mitigate and contain the sources of nuclear 
and chemical hazards, accurately predict the spatiotemporal transmission and diffusion of nuclear and 
chemical hazards, assist combat operations and support decision-making. This paper summarizes and analyzes 
the key algorithms and application platform of the current nuclear and chemical hazard source inversion 
technology, and puts forward the enlightenment and suggestions for its development, which has a certain 
theoretical reference and reference value. 

1 Introduction 

Usually, nuclear and chemical attacks are accompanied by 
sudden and huge lethality. It is an important task to 
determine the information related to the nuclear, chemical 
and biological safety and national defense security of the 
country, which can help to alleviate and contain pollution 
sources, and more accurately predict the spatiotemporal 
transmission and diffusion of pollutants, providing a 
decision for the army's combat protection, combat 
decontamination and combat operations Policy basis [1]. 
Therefore, based on the inversion technology of nuclear 
and chemical hazards source term, this paper summarizes 
the relevant methods, technologies and platforms, 
analyzes the focus of next research.  

2 Key Algorithm of Nuclear and 
Chemical Hazards STI 

2.1 STI based on Euler method 

Most source term inversion algorithms use Euler method 
to obtain source term information by minimizing the 
difference function, such as optimal interpolation method, 
genetic algorithm, Kalman filter, ensemble Kalman filter, 
four-dimensional variation, set four-dimensional variation, 
etc. [2-6]. Euler methods usually either rely on statistical 
methods for selecting test solutions or use adjoint models 
to calculate backward from observation time to release 
time. Both methods may include iterative optimization 
solution [7-9]. 

In Bayes formula and Kalman filter, random sampling 
is used to generate source information, which is then used 
as the input of AT&D model [10-12]. The difference 

between the subsequent concentration output and the 
concentration observation can be used to determine the 
possibility of these initial estimates. All probability 
density functions of source information generated by all 
estimation likelihood calculations can be used to optimize 
the program to obtain iterative improved estimates of 
source locations [13-16]. In addition, Bourne Joseph R et al. 
[17], of the Automatic Machine Control Laboratory, 
Department of Mechanical Engineering, University of 
Utah, USA, proposed a new algorithm for plume source 
term estimation and source search motion planning based 
on nonparametric Bayes, which uses the coordination and 
plume estimation model among multiple robots to realize 
faster and more robust pollution source location 
determination and source intensity estimation. The 
algorithm has been used in the design of mobile robots 
equipped with gas concentration sensors. 

 
Fig.1 source term inversion algorithm based on Euler method 

 
Many Euler STI contain adjoint models. On the basis 

of adjoint model, variational assimilation method is 
gradually applied to source term inversion, and a large 
number of experiments and applications have been carried 
out in the research process. The most representative is the 
CEREA research team headed by Marc Bocquet [18], which 
has successively verified the effectiveness of variational 
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data assimilation in the inversion of nuclear accident 
source terms by using numerical simulation experiments, 
wind tunnel experimental data and European atmospheric 
diffusion experimental data, and then estimated and 
studied the release source terms of Chernobyl and 
Fukushima nuclear accidents. 

In addition, there are other Euler methods that do not 
require adjoint model or Bayesian reasoning. By 
iteratively adjusting the AT&D prediction driven by 
source information, these methods directly obtain the 
source information from the decentralized model to match 
the observed pollution concentration values.  

2.2 STI based on Lagrange method 

The second type of STI algorithm is Lagrange method, but 
it is not widely studied and applied as Euler algorithm. 
Lagrange methods belong to the category of entity 
backtracking, that is, they trace the state of an entity to its 
original state. This method is similar to the target tracking 
problem proposed by Hall and McMullen [19] (2004). The 
traditional Lagrangian backtracking method is to trace the 
source by analyzing the time of a single fluid package [20-

22]. The requirements of wind field and pollutant 
concentration data are often too high to be used for source 
term estimation. In addition, the reverse flow must 
converge in order to accurately trace the fluid back to its 
source, or the fluid must evolve in time so that multiple 
trajectories intersect at the source [23]. 

Based on the traditional Lagrangian package 
backtracking method, some scholars have extended and 
improved it from the perspective of multi-source inversion 
and multi-scale inversion, and proposed Lagrange entity 
backtracking, Lagrange particle model and other methods. 
Andrew J. Annunzio, Sue Ellen Haupt and others [24-27] 
(2007, 2012) , of Pennsylvania State University, have 
carried out a series of studies in the field of pollution 
transmission and diffusion. In view of the complex 
problem of the number of uncertain pollution sources and 
the overlapping of emission, they proposed a multi entity 
field approximation (MEFA) method based on Lagrange 
state estimation to locate the location of multiple 
instantaneous or continuous release pollution sources by 
integrating the effects of turbulence and solid diffusion on 
multi-source concentration field. However, the influence 
of complex underlying surfaces such as buildings and 
terrain on pollutant diffusion is not considered in the 
literature. 

Stohl A of Greece used the Lagrange particle model [28] 

in RODOS to conduct STI research based on data of 
numerical simulation experiment and Mol Belgium site 
tracer experiment, which preliminarily realized the 
inversion of the release source term of nuclear accident 
using dose rate data. Subsequently, in order to strengthen 
the ability of RODOS to predict and evaluate the 
consequences of nuclear accidents, they launched the 
project of "data assimilation of off-site nuclear accident 
emergency" based on Kalman filter [29]. Unfortunately, 
due to the complexity of the actual nuclear accident, the 
experimental results are quite different from the actual 
situation, so it has not been carried out all the time [30]. 

Mahmoud Bady [31] (2017) carried out Lagrangian particle 
inversion modeling according to the basic principles of 
computational fluid dynamics, aiming to determine the 
location of urban air pollution sources by using direct 
inversion technology. 

2.3 STI based on deep learning 

Deep learning provides a new idea for source term 
inversion. It does not need to explore the mathematical 
relationship between the source term and the observed 
value, but only needs to learn enough training data to 
quickly predict and retrieve. The mapping relationship of 
deep learning organization is shown in Figure 2. Ilias 
Bougoudis et al. [32] (2015) proposed a triple intelligent 
integrated system (HISYCOL) based on hybrid machine 
learning. Through cluster data sets and unsupervised 
machine learning, the system realizes clustering tracking 
of data vectors and hidden knowledge mining, and has 
significant effect in processing correlation analysis and 
source term inversion under high pollutant concentration. 

Jan Kleine, University of Twente, the Netherlands 
Deters et al. [33] (2017) proposed a machine learning 
inversion method based on six-year meteorological data 
and PM2.5 pollution data to solve the problem of urban 
particulate matter pollution diffusion. The test and analysis 
show that the inversion accuracy of this method is better 
than that of stable weather under strong wind or high 
precipitation, because under stable weather, the influence 
of underlying surface on PM2.5 pollution diffusion is far 
greater than that under extreme environment.  

Julien Brajard et al. [34] (2020) of Sorbonne University 
in France proposed a hybrid data assimilation method 
based on the combination of Kalman filter and neural 
network to solve the problems of large noise impact in 
observation data and low accuracy of pollution prediction 
model, and carried out numerical experimental analysis 
through Lorenz 96 model. Compared with Kalman filter, 
the hybrid method can not only shorten the calculation 
time by two times, but also ensure the accuracy of 
inversion and prediction decline steadily with the increase 
of observation noise. 

 
Fig.2 Example of deep learning organization mapping 

relationship 
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3 Application Platform of Nuclear and 
Chemical Hazards STI 

In Europe and the United States, the inversion of nuclear 
and chemical hazard source terms developed to the peak 
in the 1970s and 1980s, and the technical research system 
was basically formed [35]. Since the 1990s, with the 
development of relevant basic disciplines, inversion 
technology has been integrated with numerical analysis of 
micro meteorological field, pollutant diffusion of complex 
terrain, virtual environment simulation, etc. many 
countries, such as the United States, the United Kingdom, 
the Netherlands, Sweden and other countries have 
successively established comprehensive emergency 
response systems including leakage source model, wind 
field model and diffusion model, and have a variety of 
evaluation software systems, which have been widely 
used in the international business, and have reached a 
mature degree of industrialization. The most 
representative systems are HG, NARAC and SAFER 
system. 

HG system [36] mainly includes thermodynamic model, 
escape model, plume jet model, heavy gas diffusion model, 
long-distance diffusion model and so on, which can 
evaluate the diffusion of gas and liquid or the two-phase 
release of multi-component mixture. It is used for gas 
escape, flash evaporation, evaporation tank, heavy gas 
diffusion, pure diffusion and UF6 gas diffusion with 
chemical reaction. NARAC system [37] can simulate 
complex flow field, detailed particle diffusion, dry and 
wet deposition process on various spatial scales, including 
local and regional meteorological prediction, diffusion 
model and nuclear explosion settlement model, and can 
simulate and analyze the leakage and release of nuclear 
and chemical hazards in complex environment. SAFER 
system [38] can handle various types of releases, including 
instantaneous, continuous, transient flows, ground level, 
uplift releases, and low or high momentum jets. 

In addition, the British NAME system [39] can retrieve 
and predict the instantaneous or continuous time air 
concentration, including the concentration, deposition and 
dose of radioisotopes, by tracking the three-dimensional 
trajectory of fluid particles and calculating the air 
concentration by Monte Carlo method, simulating the 
medium and long-term transport and deposition of 
pollutants. GASMAL [40], a decision support system 
developed by the Netherlands Institute of Applied 
Sciences (TNO), combines calculation speed, graphic 
display and database information to enhance the fast 
decision-making, which is crucial for chemical accident 
emergency, and ensures the timeliness of emergency 
response. 
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Table1. Nuclear and chemical hazards emergency response system   

Name 
(Development Agency) 

Mesoscale atmospheric diffusion model 
Wind field 
calculation 

Hazardous 
dose 

Mesoscale 
and long 

range models 
NARAC(LLNL/USA) Particle diffusion model Yes Yes Yes 

RODOS(EC) 
Gaussian plume model; 
 Gauss plume model; 
Lagrange puff model 

Yes Yes Yes 

RESEY(FZK/ Germany) Segmented Gaussian plume model Yes Yes - 

STREAM(SSES/USA) 
Lagrange puff model (MESOI); 

Gaussian linear plume model 
Yes Yes - 

LENA-WIN(SSI/ Sweden) Gaussian linear plume model Yes Yes - 

RECASS(SPA/ Russia) 
Gaussian puff model; three dimensional 
numerical model; Monte Carlo model 

Yes Yes - 

SPEEDI(JAERI/ Japan) Particle diffusion mode (WIND04/PRWDA) Yes Yes Yes 
IMIS(BFS／Germany) Lagrange and Euler diffusion models Yes Yes - 

WISERD(NRPB／Britain) Gaussian class pattern Yes Yes - 
CONRAD(IRSN/ France) Graph method and Gauss puff model Yes Yes - 

4 Enlightenment to my development 

To sum up, the research on the inversion of source terms 
of nuclear and chemical hazards in foreign countries has 
been quite large. From the perspective of application 
platform, some countries such as the United States, the 
United Kingdom, the Netherlands and other countries 
have developed relatively mature inversion and diffusion 
prediction platforms; from the perspective of inversion 
algorithm, whether it is Euler principle, Lagrange 
principle or deep learning, each method gradually presents 
the trend of integration and integration. 

4.1 Deep Learning Will Become a New Research 
Hotspot 

Compared with the optimal interpolation method, genetic 
algorithm, Kalman filter and other methods, deep learning 
has obvious advantages in improving the accuracy and 
speed of hazard inversion, which brings new research 
ideas for source term inversion. However, deep learning 
requires high training samples and computational 
performance, and it is difficult to learn complex inversion 
samples, which is still in the primary research stage. The 
inversion algorithm based on deep learning, four-
dimensional variation and ensemble Kalman filter is 
bound to become an important means to solve the 
inversion problem in complex environment. 

4.2 Inversion of Multi Pollution Sources Will 
Become a New Research Focus 

According to the research status, domestic and foreign 
scholars mainly focus on single point source continuous 
or instantaneous release inversion, and there are few 
studies on multi pollution sources term inversion. Some 
research institutions in the United States have carried out 
experimental research, and the domestic is still in the stage 
of mathematical derivation. However, in the actual combat 
environment, there is no single point source pollution. The 
inversion research of continuous, instantaneous and even 

mixed release of multiple pollution sources is more 
important for hazard prediction and protection decision-
making. Therefore, the source term inversion of multiple 
pollution sources will be the focus of practical application 
in the next step. 

4.3 Qualitative and Quantitative Mixed Inversion 
Will Become a Research Difficulty 

At present, the information obtained by all kinds of 
reconnaissance and monitoring equipment in the 
battlefield environment is diverse and in different formats. 
Most of the monitored data are qualitative data based on 
sensitivity alarm, and the collection and acquisition 
methods of quantitative monitoring value data are 
relatively less. At the same time, there are many 
uncertainties in the acquisition of information such as 
pollution species, hazard source intensity, attack mode, 
meteorological field and so on, which is difficult to 
guarantee the error of the result. Therefore, it is a difficult 
problem to put forward the qualitative and quantitative 
hybrid inversion technology suitable for battlefield 
environment. 

In addition, the scientific layout of monitoring 
equipment is of great significance to reduce redundant 
interference and improve inversion accuracy, but there are 
relatively few studies that can be used for reference, which 
is also a key link that needs to be strengthened. 
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