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[Abstract] The reliability, efficiency and accuracy of CNC machines as work cells of intelligent 
manufacturing systems (IMS) are criteria to measure the processing level of the latter. In order to improve 
the reliability of the IMS and reduce the maintenance cost, very sound preventive maintenance and 
management strategies concerning the CNC machines should be defined. We realized a parameter 
estimation of our reliability model for CNC machine units in an IMS environment, carried out a linear 
correlation test and a distribution fitting test for the model and obtained the failure distribution function and 
failure rate function. We then built a post-failure maintainability model and realized a maintainability 
evaluation. Following the above analyses, we built a cost-based preventive maintenance cycle model and 
obtained its optimal value by using the particle swarm optimization (PSO) algorithm. This research and its 
result can on the one hand guide the setting-up of preventive maintenance planning and management 
schemes and on the other hand reduce the production cost and enhance enterprise efficiency. 
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1 Preface  

Over maintenance and lack of maintenance are two 
common problems that exist in IMS maintenance 
processes. Excessive preventive maintenance leads to 
increase of total maintenance cost while lack of 
preventive maintenance often causes more frequent 
machine failures and thus increases maintenance cost. 
The maintenance cost control and the optimal 
maintenance efficiency demand that the preventive 
maintenance cycle be soundly defined and the balance be 
found between the failure time and checking time in 
order to reduce the maintenance cost per unit time. It is 
therefore imperative to research on the preventive 
maintenance and its management strategies [1-4].  

Scholars of the field have carried out a large number 
of studies. Xiaofeng Wang et al built an equipment 
reliability model by using the three-parameter Weibull 
distribution, taking into consideration the preventive 
maintenance (PM) cost and post maintenance cost 
caused by accidental failures. They then underwent its 
parameter optimization by differential evolution 
algorithm.They also carried out researches on two PM 
strategies on multi-device series systems [5].  

 Tantele developed an optimization methodology 
based on genetic algorithm (GA) principles and 
Bayesian updating[6]. Abubaker proposed a maintenance 
cost estimation model within the research and 
development of this decision support system (DSS). An 

empirical-based methodology is pursued and validated 
through case study analysis [7].  

Jiang et al, through their analysis of the inertial 
navigation system and the redundant system of the 
equipment studied, established the objective/goal 
function that aimed at the minimalization of the 
maintenance cost and obtained the equipment’s PM 
cycle. The present research is based on our tracking 
records of failure time of a machining center over a span 
of months. The detailed data have permitted us to realize 
a parameter estimation, a linear correlation test and a 
distribution fitting test of our reliability model. They 
have further enabled us to build a model for the 
post-failure maintainability as well as to carry out its 
evaluation. In the end, we built a model for the CNC 
machine’s cost-based preventive maintenance cycle, and 
obtained its optimal value by using the particle swarm 
optimization (PSO) algorithm.  

2 Reliability Model 

We built a reliability model with the failure data of a 
machining center. Among the data, 29 failure intervals 
are randomly selected, as shown in table 1.  

Table 1  Failure time of tool magazine 

i it (h) i it (h) i it (h) 

1 12 11 211 21 394 
2 45 12 234 22 417 
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3 54 13 237 23 557 
4 54 14 259 24 565 
5 61 15 266 25 591 
6 63 16 271 26 729 
7 70 17 274 27 769 
8 92 18 296 28 944 
9 96 19 346 29 1044 

10 104 20 372   

2.1 Parameter Estimation of the Reliability 
Model  

According to previous reliability studies on machining 
centers, the cumulative failure distribution function 
abides by the Weibull distribution [15]. The 
two-parameter Weibull distribution function is :  

( ) 1 exp[ ( ) ],          0
t

F t t


          (1) 

The corresponding reliability function is ： 

( ) exp[ ( ) ]
t

R t 


  ,    0t         (2)  

Let the univariate linear regression equation be  
y A Bx                 (3) 

According to the two-parameter Weibull distribution, 
formula (1) can be linearly transformed as following: 
： 
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The value F(t) needs to be estimated before 
calculation. In general, the median rank is used to 
estimate F（t），that is :  
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According to the least square method, the parameter 
estimation is drawn as below: 
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At last we can get that: 
ˆ B̂  , ˆ ˆˆ exp( / )A B   。 

In line with the discussion above and with the 
cumulative failure time data of the headstock (refer to 
Table 1), the headstock reliability model parameter was 

obtained as:   1.0805，  345.5。 

2.2  Hypothesis Test of the Reliability Model 

2.2.1 Linear Correlation Test 

The linear correlation coefficient is: 

1 1 1
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 (4) 

When 
̂

> ( 2, )n   ，we consider that the linear 

correlation between X and Y is significant.  ( 2, )n   , the 

critical value of the correlation coefficient  , can be 
obtained either by consulting the table or by approximate 
formula calculation. The latter method is adopted in this 
paper, the significance level being  = 0.1. Therefore,   

( 2, )

1.645

1
n 

 
             （5） 

In the formula, 2n   ，n is the cumulative failure 
number.Using the correlation coefficient method, we 
carried out a hypothesis test on the failure distribution of 

the headstock. Formula (4) revealed that ̂ = 0.9833, 

and ( 2 )n   
0.3226. Thus, ( 2 )ˆ n   

， and 
accordingly, the linear correlation between X and Y is 
significant. Therefore, the failure distribution of the 
headstock’s subsystem obeys the Weibull distribution 
theory.  

2.2.2 Hypothesis Test of the Fitting of Distribution  

Using the “d” test method, we checked the failure time 
distribution function. If the distribution function 
obtained from the estimated parameter meet the 
following conditions, the parameter estimation is well 
founded. Suppose that: 

 0 ,sup ( ) ( ) maxn n i n
x

D F x F x d D 
 

       (6) 

In the formula, F0(x) is the original hypothetical 
distribution function, Fn(x) is the empirical distribution 
function with the sample size being n, and ,nD  is the 

critical value.  
For id ， details are as follows：  

0 0

1
max ( ) , ( )i i i

i i
d F x F x

n n

    
 

     (7) 

After carrying out a “d” test on the earlier calculated 
headstock failure distribution function. 

1.239( ) 1 exp[ ( ) ]
2025.350

t
F t     

We obtained the value Dn=0.106. When the 
significance level is 0.1, ,nD  = 0.3026. Thus the result 

,n n aD D  complies with the hypothesis test. The above 

demonstration then made it possible to calculate the 
failure distribution function, failure rate function and 
probability density function for each component of the 
machining center, as shown in Table 2. 
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Table 2. Reliability function 

 可靠性函数 Reliability function 
故障分布函数  

Failure distribution function 
 

1.0805( )=1-exp[ ( / 345.5) ]F t t  

概率密度函数  
Probability density function 

 
0.0805 1.0805

1.0805
exp

345.5 345.5 345.5

t t
f t

         
     

 

故障率函数  
Failure rate function 

 
0.0805

1.0805

345.5 345.5

t
t    

 
 

 

3 Maintainability Model Analysis 

3.1 Maintenance Model Establishment 

The post-failure maintenance of the machine tools 
demands research on their maintainability. 

Therefore, the building-up of maintainability model 
not only is the key to quantitative research on system 
maintainability but also lays the foundation for further 
research on maintenance cost. 

Table 3 shows the post-failure maintenance time data 
recorded during field tests at a series machining center.  

Table 3. Troubleshooting time-taken list 

Group No.  Time-taken 
Number of 
breakdown 

Frequency 

1 0.5 10 0.3448 

2 1 7 0.24137 

3 1.5 6 0.20689 

4 2 3 0.103448 

5 3.5 1 0.03448 

6 5.5 1 0.03448 

7 7.5 1 0.03448 

 
According to experience, the distribution type of the 

failure repairing time conforms to lognormal distribution, 
the probability density function of the latter being : 

2
1 ln

21
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t

m t
t




 

   
 


      (8) 

In the formula,   is lnt’s mean value and  is 
lnt’s variance. 

The lognormal cumulative distribution function is the 
following： 

2
1 ln

2

0

1
( )

2

x
t

M t dx
x




 

   
 

 
      (9) 

We used the maximum likelihood method to estimate 
its parameters. By assuming that the observed 

maintenance time at the machining center 1 2, , nt t t
 

was a sample of a lognormal distribution population, we 
obtained the likelihood function as follows： 

2

1

ln1 1
( ; , ) exp ( )

22

n
i

i i

t
L t

t


 

 
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 


 (10) 

To take logarithm for the above formula, the 
corresponding maximum likelihood equation is： 
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The parameter estimation for lognormal distribution 
was ： 

1
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1

1
ˆ ln

1
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Under the premise that the failure repairing time at 
the machining center obeyed the lognormal distribution, 
we calculated the parameter estimates: 
̂ =0.088， ̂ =0.732。 

Thus the maintainability function M(t) was reached 
at as below: 

21 ln 0.088
( )

2 0.732

0

1
( )

0.732 2

x
t

M t e dx
x 




  
 

3.2 Maintainability Evaluation 

Mean Time To Repair (MTTR) 
The estimated MTTR value was calculated by the 

formula:  
2

0
( ) exp( )

2
MTTR tm t dt




    (13) 

Thus we obtained the mean time taken for repair: 
MTTR=1.427h. 

4 Preventive Maintenance Cycle Model 

4.1 Preventive Maintenance Cycle Model for 
Machine Tools 

In order to build the preventive maintenance cycle model 
based on failure rates, we prescribed the following 
assumptions: 
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1. After each preventive maintenance, the failure 
rate of the machine tool returns to original level  

2. When the machine tool breaks down within a 
PM cycle, it will be repaired. Such maintenance can 
restore its function but cannot affect its failure rate after 
repairing.  

The formula of the preventive maintenance cycle 
model which is based on failure rates is: 

0 0
( ) ( )

( )

T T

f f p p f pc d t dt c d d t dt d S
C T

T

      
 

(14) 

The preventive maintenance cycle being T, C(T) 
refers to the expected total maintenance cost per unit 
time. λ(t) is the machine tool’s failure rate, fd is its 

mean failure-induced downtime. Therefore, fd = MTTR. 

0
( )

T
t dt  refers to the number of failures occurring 

within the preventive interval cycle T, fc  to the 

maintenance cost per unit time during the failure period, 

pc  to the cost for preventive maintenance per unit time, 

pd  to the average downtime value for preventive 

maintenance, and S to the cost loss per unit time due to 
machine breakdown. 

Assuming on the one hand that N failures occurred to 
a machine tool, each of which demanded the repair time 

( )fd i  and the repair cost ( )fc i , in which i=1, 2, …N, 

and on the other hand M preventive maintenances were 
carried out on the machine tool, each of which demanded 
the repair time ( )pd j  and repair cost ( )pc j , in which 

j=1, 2, …N, we obtained the following formula:  
 

1

( ) ( )

f

N

f f f
i

d MTTR

c c i N d



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d d j M
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



 


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


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        (16) 

4.2 Preventive Maintenance Model: Calculation 
and Analysis  

The above demonstration delivered the result 

fd MTTR = 1.427 and according to the data provided 

by the machine owner, fc =600， pc = 200， pd =2，S=100. 

The failure rate function ( )t  could then be calculated 

by following Table 2 and the expression of C(T) could 
be determined through the formula 14.  
 

0 0
( ) ( )

( )

T T

f f p p f pc d t dt c d d t dt d S
C T

T

      
 

 

0.0805

0

1.0805
600 1.427 200 2

345.5 345.5

T t
dt

T

     
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
 

0.0805

0

1.0805
1.427 2 100

345.5 345.5

T t
dt

T

      
   


 

1.08051.806 598.2T

T

 
                (17) 

4.3 Parameter Optimization based on Particle 
Swarm Optimization Algorithm 

The theory of particle swarm optimization (PSO) is 
derived from research on birds’ predation behavior. The 
algorithm is characteristically easy to implement, highly 
precise and of high convergence speed. It has shown its 
advantages in solving practical problems in many fields. 
We used PSO algorithm to optimize the expression of 
C(T), i.e. formula (17). Figure 1 demonstrates the PSO 
parameter optimization flow:  

 
Figure 1. PSO Parameter Estimation Flow Chart 

 
After the optimization of the C(T) with PSO, we 

found that when T=2213, the corresponding total 
maintenance cost C(T) per unit time reached its 
minimum value,  
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min ( ) (2213)C T C =3.6276841。 

We also got the correlation between the total 
maintenance cost C(T) per unit time and the preventive 
maintenance cycle, as shown in Figure 2. As the cycle T 
increases, the C value decreases. When T=2213h, 
maintenance cost per unit time reaches its minimum 
value and then gradually increases following the increase 
of time value. 

Therefore, reliable forecast of the preventive 
maintenance model and optimal maintenance and 
management of the machining tool can reduce the 
maintenance cost and enhance the productivity of the 
enterprise.  

500 1000 1500 2000 2500 3000 3500 4000
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

T/h

C
(T

)

 
Figure 2. Correlation Between Maintenance Cost and 

Maintenance Cycle per Unit Time 

5 Conclusion 

In order to improve the reliability and reduce the 
maintenance cost of the intelligent manufacturing system, 
it is crucial to formulate sound preventive maintenance 
and management strategies for the CNC machine tools. 
In this research we have realized estimates on the 
reliability model’s parameters of a CNC machine tool in 
an IMS, and carried out a linear correlation test and a 
distribution fitting test on the model. We have thus 
obtained the failure distribution function and the failure 
rate function. Through this case study.the methodology 
for model building-up and relevant maintainability 
evaluation is available and instructive for readers’ 
reference. 

In addition to these analyses, we have built a failure 
rate based preventive maintenance cycle model and 
optimized it with the particle swarm optimization (PSO) 
algorithm until it reached its optimal value. The 
cost-based research methods adopted in this paper and 
the conclusions it has reached can help IMS machine 
management teams set up well founded preventive 
maintenance planning and management schemes in order 
to reduce the production cost and enhance enterprise 
efficiency. 
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