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Abstract. By solving the Nash equilibrium of the electricity market, it is possible to observe the game process 
of market entities under different boundary conditions and predict the future trend of the market. In order to 
study the state of market equilibrium in the power spot market, firstly we constructed a bi-level equilibrium 
model. The upper layer is the problem of maximizing the profit of power generation enterprises under the 
bidding constraint, and the lower layer is the security constraint economic dispatch with the goal of 
maximizing social welfare. The traditional solution transforms the bi-level model into MPEC or EPEC 
through optimal conditions, but they are generally non-convex and difficult to solve. In this regard, the co-
evolution algorithm is used to solve the bi-level model, and it is proved that the result of co-evolution under 
a limited strategy set is equivalent to the Nash equilibrium. Finally, an example of PJM 5 machine with 5 
nodes is used to analyse the power market equilibrium in the spot market. 

1 Introduction 

The electricity market equilibrium is a stable state reached 
after the dynamic evolution of the market between the 
supply and demand sides of the bidding game. By solving 
the equilibrium point of the electricity market, it is 
possible to observe the decision-making evolution process 
of the market entities, and also to predict and analyse the 
Nash equilibrium point under different market boundary 
conditions. In this way, suggestion for improvement of 
market rules and design can be come up with.  

The game between market entities, and the process of 
information feedback through the clearance of the 
electricity market can be modelled as a bi-level model [1] 
[2]. In the method of solving the market equilibrium point, 
the classic equilibrium analysis method believes that the 
game party is completely rational and finds the 
equilibrium solution of the game under the premise of 
sufficient information (Cournot model) [3]. [4] solves the 
market equilibrium point by constructing an bi-level 
equilibrium model. The upper level is the profit 
maximization problem of power generation enterprises, 
and the lower level is the optimal flow problem of social 
welfare maximization. By replacing the lower-level 
problem with the first-order optimal conditions [5、6], the 
bi-level model is converted into a single-layer model [7], 
namely mathematical program with equilibrium 
constraints [8] (MPEC). Furthermore, an equilibrium 
program with equilibrium constraints (EPEC) is formed 
by combining the MPEC model of the optimal decision-
making of multiple market entities to solve the 

equilibrium of the entire market. [9] discussed the market 
equilibrium of the natural gas and electric energy coupling 
market through EPEC. [10] studied the influence of 
market power and market power mitigation policies on 
market equilibrium through the MPEC model.[11] studied 
the impact of green certificates on market equilibrium in 
an oligopoly market through EPEC.  

The above study of market equilibrium using the 
classic game theory method belongs to the research of 
static game, but this can only be applied to the mature 
stage of market development. In the electricity market, the 
cost function of participants and their competition 
information are generally confidential. Besides, the 
condition of complete rationality is difficult to satisfy, 
therefore, the use of traditional equilibrium theory to 
model the electricity market may cause problems. In 
addition, the mathematical process of MPEC and EPEC 
models is cumbersome and complex, and it is prone to be 
non-convex or difficult to solve when dealing with 
mathematical models with high-dimensional slack 
variables and complex constraints. Therefore, some 
scholars proposed to use heuristic algorithm [12] such as 
co-evolution algorithm [13] to solve the bi-level model. 
Co-evolutionary algorithms have been widely used since 
they were proposed, including solving power system 
reactive power optimization [14、15], robust scheduling 
[16] and market equilibrium [17]. Literature [18] uses co-
evolutionary algorithm to find the pure strategy 
equilibrium in the market, and proves that the algorithm 
has strong ability to search the Nash equilibrium [19].  

In the current modelling of the electricity market, there 
are few considerations of multi-block bidding and safety 
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constraints. In this regard, this article first constructed an 
upper and lower two-level equilibrium model of multi-
block bidding for power generation companies and safe-
constrained economic dispatch of power dispatch agencies 
in a spot environment, then uses a co-evolution algorithm 
to solve the market equilibrium point, and finally analyses 
the market equilibrium point in the spot environment 
Features. 

2 Market equilibrium model  

2.1 Market rules  

In this article, the units are distributed on various nodes of 
the power network, and participate in the day-ahead 
market through bidding in the power trading centre. In the 
day-ahead market, units declare their willingness to trade 
capacity and price of power, and the declaration can be 
divided into multiple stages to reduce the risk of failure. 
The declared information will take effect within 24 hours 
of the next day and no modification of the declared 
information is allowed within the day. At the same time, 
in order to avoid the unit holding the remaining power 
generation capacity to manipulate the market, the sum of 
the bidding capacity should be the upper limit of the unit's 
bidding capacity. 
 For the demand sides, in order to ensure sufficient 
power supply, the marginal utility and the demand of 
electricity is declared at the same time, and the sum of the 
winning bidding electricity of all users at the same node is 
equal to the predicted load of the node.  
 After the power dispatching agency receives the 
declaration information from each market entity, it 
conducts a day-ahead market clearance program once a 
day. Market clearing uses the DC power flow model to 
construct network security constraints. The objective 
function of clearing is a social welfare maximization 
model that comprehensively considers the supply-side and 
demand-side declarations. The result of clearing is the 
amount of electricity purchased or sold by market entities 
per hour, and the system marginal price. 
 In the bidding declaration stage, all market entities 
make decisions with the goal of maximizing their own 
profits. After multiple rounds of bidding, the market will 
reach an equilibrium state, that is, no market subject can 
unilaterally change its strategy to increase profits. Since 
the best response strategy of market entities is related to 
the market clearing conditions shared by all market 
entities, it is a multi-leader-common-follower game 
problem. 
 This paper constructs a bi-level model to describe the 
bidding strategy behaviour and process of market entities 
[20]. The upper-level model is an optimization model for 
maximizing the profits of power generation companies, 
with the curve of bidding declaration as the optimization 
variable, and the restriction of bidding declaration in 
market rules as constraints. The lower-level model aims to 
describe the process of market clearing, with the 
maximization of social welfare as the objective function, 
and the constraints include unit operation constraints, 
network security constraints, and market rules constraints. 

The upper and lower models are interconnected and 
restricted. The optimal decision-making process of the 
power generation company in the upper model depends on 
the lower node electricity price information and cleared 
bidding capacity, while the basic data for clearing of the 
lower market is the declaration generated by the optimal 
decision of the upper model curve. Details as follows: 

2.2 Upper model 
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Where: ( )n t  is the locational marginal price of node n  

at time t ; G
, ( )i jP t  is the bid-winning power generation 

of unit i  at the j  quotation stage at time t ;  ,
G
i j is 

the marginal generation cost of unit i  at the j  

quotation stage; ,i j  is the 'j s  price offer of the unit 

i ; max is the upper limit of the quotation; ni means 

that unit i  is located on node n ; Gmax
iP  is the upper 

limit of the bidding capacity of unit i  in the day-ahead 

market; Gmax
,i jP  is the capacity of the 'j s  declaration 

stage of unit i ;   is the minimum declaration ratio of 
the declaration stage. Formula (1) is the revenue function 
of the unit (minimizing the negative value of revenue); 
Formula (2) is the non-negative constraint on unit quotes; 
Formula (3) is the constraint on the upper limit of unit 
quotes and the monotonic increasing constraint of unit 
quote curves; Equation (4) is that the sum of all declared 
capacity of the unit is equal to the upper limit of the 
biddable capacity, so as to avoid the power generation 
companies holding capacity to raise electricity prices; 
formula (5) indicates that the declaration of each stage 
must be greater than the minimum declared proportion of 
biddable capacity. 

2.3 Lower model 
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Where: t  is the index of the clearing time, i  is the 
index of the generator set, j  is the index of the quotation 

stage of the generator set, d  is the index of the demand, 
k is the index of the demand quotation stage,  n  and 

m  are the indexes of the nodes. ,d k  is the marginal 

utility of electric energy demand; D
, ( )d kP t  is the 

electricity demand of demanding user d  in the k  

declaration stage; Gmin
iP  is the minimum technical output 

of unit i ; D ( )nP t  is the load demand of node n  at time 

t ; D
iR  and U

iR are the downward and upward climb 

rates of unit i  respectively; U ( )S t and D ( )S t  are the 

positive and negative spinning reserve demand of the 
system at time t respectively; ,n mB  is the line 
admittance of nodes n  to m ; ( )n t  is the voltage phase 

angle of node n  at time t ; max
,n mP  is the line 

transmission power limit of nodes n  to m  . Equation (6) 
is the clearing objective function for maximizing social 
welfare; Equation (7) is that the sum of the bid-winning 
power of each unit must not exceed the maximum power 
generation capacity and be less than the minimum 
technical output; Equations (8) and (9) indicate that the 
amount of electricity purchased shall not exceed the upper 
limit of declared electricity; formula (10) is that the sum 
of the electric quantity of all users at the same node is 
equal to the predicted load constraint; formula (11) is the 
climbing rate constraint; formula (12) and formula (13) 
are the spinning reserve constraint ; Equation (14) is the 
node power balance constraint; Equation (15) is the upper 
and lower limit of the branch power flow; Equation (16) 
is the node voltage phase angle constraint; Equation (17) 
indicates that the node with the network node number 1 is 
set as the reference node . 

In the optimization model with the minimum power 
purchase cost as the objective function, the Lagrangian 
multiplier of equation (14) is the node marginal price, but 
in this model, the objective function of maximizing social 
welfare is adopted, Therefore, the node electricity price is 
defined as the average value of the marginal power utility 
increase on the power consumption side and the marginal 

power generation cost increase on the generation side 
under the unit load increment, namely: 

G D D D( / / ) / 2n n nF P F P                  (18) 

G G
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Where: GF  is the power generation cost on the power 

generation side; DF  is the power utility on the power 

consumption side. The settlement electricity price of 
formula (18) means that after the high and low matching 
of the declaration stages of the sender and the consumer, 
the average price of the last matching pair is the settlement 
price. 

3 Co-evolutionary algorithm solution  

For models (1)-(17), there are two classic solutions. One 
method replaces the lower-level model through the first-
order necessary conditions to form the original dual 
formula constraint, thereby transforming the bi-level 
model into a single-layer model. Since the feasible region 
of the lower-level model is a convex set, the first-order 
necessary condition is also a sufficient condition for the 
global optimization. Finally, MPEC or EPEC is formed 
and the market equilibrium point is obtained by solving 
mixed integer linear programming. The other is to directly 
solve the equilibrium point of the market through heuristic 
algorithms (such as co-evolutionary algorithms). Because 
the heuristic algorithm surpasses the complicated 
mathematical derivation, and directly seeks the 
equilibrium point of the market through the parameter 
transfer of the upper and lower bi-level models, it is 
significantly better than the equilibrium constraint 
programming in the accuracy and simplicity of the 
solution. 

3.1. Co-evolutionary algorithm steps  

The essence of the co-evolution algorithm to solve the 
market equilibrium is to set up bidding declaration 
information for each agent through agent simulation, and 
to observe the nature of the market by observing the 
agent's bidding behaviour. The basic ideas and steps of 
using co-evolutionary algorithms are as follows: 
 Step 1: Giving basic parameters, such as typical daily 
load curve, unit parameters, network parameters, market 
rule parameters, marginal cost of power generation 
companies and marginal benefits of users, etc. Construct 
an upper and lower two-tier equilibrium model, and use 
marginal cost and marginal benefit as the first bid 
declaration information.  
 Step 2: Randomly generate an independent limited 

strategy population set iS  for all market entities 

participating in market bidding. iS is composed by N 

strategy elements ijs . Each strategy ijs  includes three 
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stage of quoted volume and quotes in the declared 
information.  
 Step 3: For any bidding subject 'i s  decision in the 
t generation, first select the strategy corresponding to the 
chromosome with the highest fitness searched by other 
populations ( )i  in the 1t   generation as a 

representative to form 1t   representative strategy set 
( 1)*t
iS 

 , ( 1)* ( 1)*={ 1,2,..., ; }t t
i kS s k N k i 

   .The bidding 

function formed by strategy ijs  corresponding to any j

chromosome in population i  and representative strategy 

set  ( 1)*t
iS 

 of other populations is submitted to the power 

dispatching agency for clearing, and the profit obtained by 
strategy ijs  is set as the fitness of the individual ( )ij iju s  : 

( 1)*( ) ( , )t
ij ij i ij iu s f s S 

                     (1) 

Where: ( )if S  represents the profit function obtained by 

the 'i s  participant after the dispatch agency clears the 

market for the bidding strategy set S  of all participants.  
Step 4: i  takes the strategy of maximum fitness 

value 
( )*t
is  as the bidding strategy of the t  generation, 

and then uses the genetic operator with the elite retention 

mechanism to operate the chromosomes. 
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Step 5: Repeat steps 2, 3, and 4 so that population 

i N  can be evaluated and evolved one by one, and 

finally the t-generation market is cleared. 
G D ( )* ( )* ( )*

1 2arg min ( , ,..., )t t t
nF s s s   t t tP ,P ,     (3) 

Where: ( )F   is the electricity market clearing model 

with the maximization of social welfare as the objective 

function, that is, the lower model; clearing results G
tP  

and D
tP  are the bidding power of the supply side and the 

demand side in the t  round of bidding respectively; t  

is the node electricity price vector. 

Step 6: Repeat steps 3 to 5 until the algebra t  

reaches the value R set by the simulation or stops when 

the market converges. 

3.2 Market Nash Equilibrium Determination 

According to the classic game theory, the Nash 
equilibrium can be explained as: the strategy adopted by 
any party is the best strategy under the strategy 
combination for all the other parties; when all others do 
not change the strategy, in order to maximize their own 
benefits, any party They will not (or cannot) change their 
own strategies. At this time, the strategy combination is a 

Nash equilibrium. It can be seen that i  satisfies the 
following formula: 

( )* ( )* ( )*( , ) ( , )   t t t
t i i t ij i ij if s S f s S s S             (4) 

 Neither party has the motivation to change its own 
strategy, because formula (4) indicates that everyone’s 
strategy is the optimal response to other people’s 
strategies, and unilateral changes to their own strategies 
will reduce their own profits, thus the Nash equilibrium of 
the market is reached. 
 It can be seen from the framework of the algorithm 
that any population i  assumes that the strategy of other 
populations ( )i  remains unchanged, and all adopts the 

best strategy of the previous generation, use genetic 
algorithm to search subspace iS for random optimization. 

If the entire ecosystem reaches convergence after several 
generations of evolution, that is, the strategy ( )*t

is  

selected by any population i no longer changes, and it is 

the best response of ( 1)*t
iS 

  , which satisfies: 
( )* ( 1)* ( 1)*( , ) ( , )   t t t

t i i t ij i ij if s S f s S s S 
         (5) 

 And since the market is in a state of convergence, 
satisfy: 

( 1)* ( )*=t tS S               (6) 

Thus for i : 
( )* ( )* ( )*( , ) ( , )   t t t

t i i t ij i ij if s S f s S s S    
  
Therefore, from the principle of co-evolutionary algorithm 
and the algorithm framework designed for market bidding 
mode, co-evolutionary algorithm has the possibility of 
simulating the market equilibrium. It needs to be pointed 
out that the focus of this article is not on the existence and 
uniqueness of market equilibrium, but on the use of co-
evolutionary algorithms to solve possible market 
equilibrium. 

4 Examples 

The network model adopts the PJM 5-machine 5-node 
model, the unit parameters are shown in Table 1, and the 
typical 24-hour load curve is shown in Table 2. On the user 
side, with loads at nodes 2, 3, and 4, the marginal utility is 
1.5 yuan/kWh, and the three-stage quotation strategies for 
3 users are 1, 0.9 and 0.8 yuan/kWh and remain unchanged 
in each round. 

Table 1. Unit parameters. 

Unit 
number 

Node 
number 

capacit
y /MW 

Grade 
rate 
/(MW/1
5min) 

Lower 
limit of 
output 

margin
al cost 
/(yuan/
kWh) 

G1 1 500 62.50 200 0.28 
G2 1 450 56.25 175 0.29 
G3 3 400 50.00 150 0.30 
G4 4 350 43.75 125 0.31 
G5 5 300 37.50 100 0.32 
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Table 2. Typical load curve. 

t 1 2 3 4 5 6 
load 905 911 867 835 813 792 
t 7 8 9 10 11 12 
load 808 797 813 921 976 1024 
t 13 14 15 16 17 18 
load 970 992 1013 1024 1019 1024 
t 19 20 21 22 23 24 
load 981 965 1035 1073 1057 981 

4.1 Market game and equilibrium analysis 

As shown in Figure 1, after a fierce game, the market 
entered equilibrium after about 15 rounds of bidding. In 
terms of bidding strategy, compared with the initial 
bidding strategy, the units have adopted price reduction 
measures in multiple rounds of games. In the example 
settings of this article, since the supply-demand ratio is 
close to 2:1, it is in a buyer's market. Therefore, the 

demand side dominates. Competition on the power 
generation side is fierce, and more power generation can 
only be obtained through price reduction, and finally 
converges to a lower level in multiple rounds of bidding 
games. 

 
Figure 1. The process of bidding 

 
Table 3. Comparison of Nash Equilibrium and Perfect Competition. 

unit 
Profit/thousand yuan Market equilibrium bidding strategy 

Game 
equilibrium 

Perfect 
competition 

Report power/MWh 
Declare electricity 
price/(yuan/kWh) 

G1 2488.0 4018.4 (222.8,130.4,146.8) (0.311,0.327,0.703) 
G2 1342.3 1617.3 (284,.4,108.7,56.9) (0.435,0.491,0.541) 
G3 1312.1 1234.5 (245.7,58.5,95.8) (0.328,0.654,0.791) 
G4 1373.6 799.0 (188.4,36.2,125.4) (0.326,0.422,0.850) 
G5 1713.9 310.0 (215.3,45.5,39.2) (0.323,0.717,0.815) 
Total profit 8229.9 7979.2 / / 
Market clearing price 
/(yuan/kWh) 

0.6629 0.6431 / / 

  As shown in Table 3, in the bidding strategies at the 
market equilibrium point, all units declare the largest 
proportion of bidding electricity in the first stage of the 
"three-stage" quotation, along with the willingness price 
close to the marginal generation cost. And in the second 
and third paragraphs, the bidding electricity will be 
reduced, while the bidding willingness price will be raised. 
Therefore, on the premise that most of its own capacity 
can be traded, the market's clearing electricity price should 
be raised as much as possible to maximize its own profits. 
 In the comparison between the equilibrium result of 
the game and the result of perfect competition, after the 
consideration of the game is added, the profit disparity 
between different units no longer changes, and small-
capacity units are not always at a disadvantage in bidding. 
In the case of perfect competition, all units are quoted at 
their marginal costs. Therefore, according to the social 
welfare maximization model, unit G1 has the smallest 
marginal cost and therefore has an absolute dominant 
position in the power generation market and has the 
highest profit. In the game equilibrium situation, although 
large-capacity units still maintain their advantages, their 
profits have dropped significantly. It can be seen that the 
influence of game strategy on the results of market bidding 
is very important. In terms of total profit, due to the 
influence of the market game, the unit raises the bidding 
price with the marginal power generation cost as the lower 

bound, thus raising the market clearing price, and the 
profit obtained by the power generation side has also been 
improved. 

5 Conclusion 

In this paper, the co-evolution algorithm is used to solve 
the upper and lower equilibrium model, and the market 
equilibrium result of the bidding game between power 
generation companies under the power spot environment 
is studied. The results show that under the limited strategy 
set, the application of co-evolution algorithm to solve the 
bi-level model can quickly converge to the equilibrium 
point of the market. 
 This article does not consider the impact of medium- 
and long-term contracts on the equilibrium of the spot 
market, which is also a question that needs to be studied 
in the next step. 
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