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Abstract. This paper mainly studied the relationship between obesity and BMI. BMI is the ratio of height to 
weight and measures a person's health. In this paper, height and weight data of obese children from 2 to 18 
years old in local hospitals were collected. The linear regression method was used to find the correlation 
between BMI and children's health degree, and the regression curve between age and BMI was plotted. This 
paper supplemented the vacancy of BMI study on children, and a complete BMI curve could be obtained for 
each child according to the curve, so as to predict possible health problems of children in advance. 

1 Introduction 

Obesity is a common global health disease [1], it can 
cause a lot of health risks, such as coronary heart disease, 
cancer, stroke and premature death. In clinical treatment, 
the importance of identifying obesity as a disease is very 
important for the treatment of such patients. Accurate 
diagnosis of obesity in the elderly is an important first step 
in providing effective treatment for high-risk groups. 

Health problems highly related to obesity include high 
blood glucose, diabetes, high blood pressure, 
hypertension, high blood cholesterol, triglycerides, 
dyslipidemia, coronary heart disease, heart failure, and 
stroke. Another bone and joint problems due to the 
pressure that weight puts on to the bones and joints, which 
can lead to osteoarthritis, and daytime fatigue and 
sleepiness, poor attention, and problems at work due to 
stopping breathing during sleep.  

BMI is short of Body Mass Index, which is a value 
derived from the mass and height of a person. The BMI is 
defined as the weight divided by the square of height. It is 
universally expressed in units of 𝑘𝑔/𝑚ଶ. A high BMI can 
be an indicator of upper body fatness. BMI cannot 
diagnose personal obesity or personal health. 

1.1 Exploring the association between BMI and 
obesity 

People usually Table 1 as a reference to illustrate the 
association between BMI and obesity. The biological 
causes of childhood obesity seem to be multifactorial. 
Eating junk foods and overeating is easy in nowadays 
society. Emotions, habits, food acquisition and many 
other factors can affect eating behavior. Modern 
conveniences such as elevators, cars and TV remote 
controls paralyze our lives. 

Table1. The BMI and Obesity Categories 

BMI Obesity Categories 
<18.5 Underweight 

18.5 – 24.9 Normal 
25 – 29.9 Overweight 

30+ Obese 
 
Genetic composition has a major influence on body 

weight. It will affect the energy consumption rate of your 
body in a static state, that is, the basal metabolic rate. 
Some people are born with a higher basic metabolic rate 
than others. So they burn more calories than others. 
Regular physical exercise can increase a person's 
metabolic rate. The lower metabolic rate makes it easier 
to gain weight. Fat distribution also has an impact. For 
example, men have fat stored in the abdomen, while 
women have fat stored in the hips and thighs. Some 
studies also show a strong association between birth 
weight and childhood obesity. 

1.2 BMI curves and functional data analysis 

The curve is a smooth, increasing line as the kids grow up. 
Some kids may have specific time points, but not all, so a 
powerful statistical tool is essential for our analysis. 
Functional data analysis (FDA) deals with the analysis 
and theory of data that are in the form of functions, images, 
and shapes or more general objects. Essentially, 
functional data is infinite dimensional. The high inherent 
dimensionality of these data poses considerable 
theoretical and computational challenges. These 
challenges change due to the way the functional data is 
sampled, and at the same time bring many opportunities 
for research and data analysis. 

The FDA's method and model can be flexibly modeled 
because it is basically non-parametric. FDA's statistical 
tools include smoothing based on sequence expansion, 
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penalty spline or partial polynomial smoothing, and 
functional principal component analysis. The smoothing 
method is different from the FDA. Smoothing is usually 
used in the following situations: you want to obtain an 
estimate of a non-random object (here the object is a 
function or surface) from noisy observations, while the 
FDA aims to analyze random samples Objects, it can be 
assumed that they are observed completely without noise 
or sparsely observed with noise and many interesting 
scenes can be found from them. Application areas that 
have been emphasized in the statistical literature include 
growth curves [2], econometrics and ecommerce [3], 
evolutionary biology [4], and genetics and genomics [5]. 

 
Fig1. BMI and Obesity 

 
Fig2. The Boy Growth Data with functional median 

2 Method 

2.1 BAND DEPTH FOR FUNCTIONAL DATA 

In the field of functional analysis, each subject is 
represented by 𝑦௜ሺ𝑡ሻ, 𝑖 ൌ 1, . . . , 𝑛, 𝑡 ∈ 𝛤, where 𝛤 is an 
interval in R. The band depth for functional data provides 
a method to order all the sample curves. Indeed, we can 
compute the band depths of all the sample curves and 
order them according to decreasing depth values. Let 
𝑦ሾ௜ሿሺ𝑡ሻ denote the sample curve associated with the 𝑖 th 
largest band depth value. We view 𝑦ሾଵሿሺ𝑡ሻ, . . . , 𝑦ሾ௡ሿሺ𝑡ሻ as 
order statistics, with 𝑦ሾଵሿሺ𝑡ሻ  being the deepest (most 
central) curve or simply the median curve, and 𝑦ሾ௡ሿሺ𝑡ሻ 
being the most outlying curve. This indicates that a 
smaller level is associated with a higher center position 
compared to the sample curve. The order statistics caused 
by the belt depth start from the centermost sample curve 
and move outward in all directions.  

Under this basic idea, Oldford introduced the band 
depth concept through a graph based approach [6]. The 
graph of a function 𝑦ሺ𝑡ሻ  is the subset of the plane 
𝐺ሺ𝑦ሻ ൌ ሺ𝑡, 𝑦ሺ𝑡ሻሻ ∶ 𝑡 ∈ 𝛤. The band in 𝑅ଶ delimited by 
the curves 𝑦௜ଵ , . . . , 𝑦௜௞ is 𝐵ሺ𝑦௜ଵ , . . . , 𝑦௜௞ሻ, which is  

൫𝑡, 𝑥ሺ𝑡ሻ൯: 𝑡 ∈ 𝛤, 𝑚𝑖𝑛
௥ୀଵ,…,௞

𝑦௜ೝ
ሺ𝑡ሻ ൑ 𝑥ሺ𝑡ሻ ൑ 𝑚𝑎𝑥

௥ୀଵ,…,௞
𝑦௜ೝ

ሺ𝑡ሻ     

(1) 
Let 𝐽 be the number of curves determining a band, 

where 𝐽  is a fixed value with 2 ൑ 𝐽 ൑ 𝑛 . If 
𝑌ଵሺ𝑡ሻ, . . . , 𝑌௡ሺ𝑡ሻ are independent copies of the stochastic 
process 𝑌ሺ𝑡ሻ  generating the observations 
𝑦ଵሺ𝑡ሻ, . . . , 𝑦௡ሺ𝑡ሻ, the population version of the band depth 
for a given curve 𝑦ሺ𝑡ሻ with respect to the probability 
measure 𝑃 is defined as  

𝐵𝐷௝ሺ𝑦, 𝑃ሻ ൌ 𝐵𝐷ሺଶሻሺ𝑦, 𝑝ሻ ൌ 𝑃ሼ𝐺ሺ𝑦ሻ ⊂ 𝐵ሺ𝑦ଵ, 𝑦ଶሻሽ         
(2) 

where 𝐵ሺ𝑌ଵ, … , 𝑌௝ሻ  is a band delimited by 𝑗  random 
curves. The sample version of 𝐵𝐷ሺ௝ሻሺ𝑦, 𝑃ሻ is obtained 
by computing the fraction of the bands determined by 𝑗 
different sample curves containing the whole graph of the 
curve 𝑦ሺ𝑡ሻ. In other words, 

 𝐵𝐷௡
ሺ௝ሻ ൌ ሺ

𝑛
𝑗 ሻିଵ ∑ 𝐼ሼ𝐺ሺ𝑦ሻ ⊆ଵஸ௜భழ௜మழ⋯ழ௜ೕஸ௡

𝐵ሺ𝑦௜ଵ, … , 𝑦௜௝ሻሽ   (3) 
where 𝐼ሼ൉ሽ  denotes the indicator function. The 
implication is that by computing the fraction of the bands 
containing the curve 𝑦ሺ𝑡ሻ, the bigger the value of band 
depth, the more central position the curve has. Then, the 
sample band depth of a curve 𝑦ሺ𝑡ሻ is  

𝐵𝐷௡,௝ሺ𝑦ሻ ൌ ∑ 𝐷ሺ௝ሻሺ𝑦ሻ஻
௝ୀଶ             

(4) 
Instead of considering the indicator function, López-

Pintado and Romo also proposed a more flexible 
definition [7], the modified band depth ( 𝑀𝐵𝐷 ), by 
measuring the proportion of time that a curve 𝑦ሺ𝑡ሻ is in 
the band:  

𝑀𝐵𝐷௡
ሺ௝ሻ ൌ

ሺ
𝑛
𝑗 ሻିଵ ∑ 𝜆௥ሼ𝐴ሺ𝑦; 𝑦௜ଵ, … , 𝑦௜௝ሻሽ 

ଵஸ௜భஸ௜మழ⋯ழ௜ೕஸ௡       (5) 

where  
𝐴௜ሺ𝑦ሻ ≡ 𝐴൫𝑦; 𝑦௜భ, … , 𝑦௜భ൯ ≡ ሼ𝑡𝜖𝛤: 𝑚𝑖𝑛௥ୀ௜భ,…,௜ೕ

𝑦௥ሺ𝑡ሻ ൑
𝑦ሺ𝑡ሻ ൑ 𝑚𝑎𝑥௥ୀ௜భ,…,௜ೕ

𝑦௥ሺ𝑡ሻሽ            

(6) 
and 

𝜆௥ሺ𝑦ሻ ൌ 𝜆ሺ𝐴௜ሺ𝑦ሻሻ/𝜆ሺ𝑦ሻ            
(7) 

if 𝜆 is the Lebesgue measure on 𝛤. If 𝑦ሺ𝑡ሻ is always 
inside the band, the modified band depth degenerates to 
the band depth in (2.1).  

After considering the ratio of the curve in the band, the 
band depth is modified, so that it avoids a lot of depth 
constraints, and it is more convenient to obtain the most 
representative curve in amplitude. The shape of the curve 
that is often linked determines the depth of the band, and 
therefore can be used to obtain the most representative 
curve in terms of shape. So there are two types of outliers: 
quantity outliers and shape outliers. In general, when the 
amplitude outlier is far away from the mean, the pattern 
of the shape outlier is different from other curves.  
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A sample median function is a curve from the sample 
with largest depth value, defined by arg 
𝑚𝑎𝑥௬ఢ௬భ,…,௬೙𝐵𝐷௡, 𝐽ሺ𝑦ሻ. If there are ties, the median will 
be the average of the curves maximizing depth.  

Although the number of curves determining a band, 𝑗, 
could be any integer between 2 and 𝐽  , the order of 
curves induced by band depth is very stable in 𝐽. To avoid 
computational issues, we use 𝐽 ൌ 2, and for simplicity, 

we write 𝐵𝐷௡
ሺଶሻ  as 𝐵𝐷  and 𝑀𝐵𝐷ሺ2ሻ  as 𝑀𝐵𝐷ே

ሺଶሻ  as 
MB in the sequel. 

 
Fig3.  Illustration of modified band depth, cited by L𝐨́pez-

Pintado and Romo  
 

Figure 3 provides a simple example with 𝑛 ൌ 4 
curves on how to compute 𝐵𝐷 and 𝑀𝐵𝐷 in practice. 
When 𝐽 ൌ 2, there are six possible bands delimited by 
two curves. For instance, the gray area in Figure 3 is the 
band delimited by 𝑦ଵሺ𝑡ሻ and 𝑦ଷሺ𝑡ሻ. We can see that the 
curve 𝑦ଶሺ𝑡ሻ completely belongs to the band, but 𝑦ସሺ𝑡ሻ 
only partly does. We define that a curve is contained in a 
band even if this curve is on the border of the band. Then 
𝐵𝐷ሺ𝑦ଶሻ ൌ 5/6 ൌ 0.83 since only the band delimited by 
𝑦ଷሺ𝑡ሻ and 𝑦ସሺ𝑡ሻ does not completely contain the curve 
𝑦ଶሺ𝑡ሻ and 𝐵𝐷ሺ𝑦ସሻ ൌ 3/6 ൌ 0.5 as it is only completely 
contained in the bands delimited by itself and another 
curve. Similarly, we could compute 𝐵𝐷ሺ𝑦ଵሻ ൌ 0.5 and 
𝐵𝐷ሺ𝑦ଷሻ ൌ 0.5. To compute 𝑀𝐵𝐷 , note that the curve 
𝑦ଶሺ𝑡ሻ  is always contained in the five bands, hence 
𝑀𝐵𝐷ሺ𝑦ଶሻ ൌ 0.83, the same value as 𝐵𝐷. In contrast, the 
curve 𝑦ସሺ𝑡ሻ only belongs to the band in gray 40/100 of 
the time, thus 𝑀𝐵𝐷ሺ𝑦ସሻ ൌ ሺ3 ൅ 0.4 ൅ 0.4ሻ/6 ൌ 0.63 by 
definition. For the other two curves, 𝑀𝐵𝐷ሺ𝑦ଵሻ ൌ 0.5 
and 𝑀𝐵𝐷ሺ𝑦ଷሻ ൌ 0.7. 

2.2 CONSTRUCTION OF FUNCTIONAL 
BOXPLOTS 

In the classical boxplot, the box itself represents the 
middle 50% of the data. An interesting idea that can be 
extended to functional data is the concept of central region 
introduced by Liu et al. [8]. The band delimited by the α 
proportion ( 0 ൑ 𝛼 ൑ 1 ) of deepest curves from the 

sample is used to estimate the central region. In particular, 
the sample 50 central region is  

𝐶଴.ହ ൌ ൫𝑡, 𝑦ሺ𝑡ሻ൯: min
௥ୀଵ,…,ሾ௡/ଶሿ

𝑦ሾ௥ሿሺ𝑡ሻ ൑ 𝑦ሺ𝑡ሻ ൑

max
௥ୀଵ,…,ሾ௡/ଶሿ

𝑦ሾ௥ሿሺ𝑡ሻ (8) 

where 𝑛/2 is the smallest integer not less than 𝑛/2. The 
border of the 50% central region is defined as the 
envelope representing the box in a classical boxplot. Thus, 
this 50% central region is the analog to the “inter-quartile 
range” (IQR) and gives a useful indication of the spread 
of the central 50% of the curves. This is a robust range for 
interpretation because the 50% central region is not 
affected by outliers or extreme values, and gives a less 
biased visualization of the curves’ spread. There is also a 
curve in the box that indicates the median 𝑦ሾଵሿሺ𝑡ሻ, Or the 
most central curve with the largest band depth value. The 
median curve can also be used to measure centrality. The 
"whisker" of the box plot is the vertical line of the plot, 
which extends from the box and represents the maximum 
envelope of the data set except for outliers. Therefore, we 
first need to identify outliers. Similarly, we extend the 1.5 
times IQR experience outlier criterion to the functional 
box plot. The fence is obtained by expanding the envelope 
of the central area by 50% by 1.5 times the range of the 
central area. And mark all the curves outside the fence as 
potential outliers, as shown in Figure 4. It should be noted 
that when each curve is just one point, the functional box 
plot will degenerate into a classic box plot. We 
recommend using a constant coefficient of 1.5 in the 
classic boxplot, but the user can modify it.  

 
Fig4. The Boy Growth Data and Functional Boxplot 

Visualization 
 
Now that the various parts of the function box diagram 

have been determined, we begin to explain its structure on 
the data set used. 
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3 Applications 

 
Fig5. The Functional Boxplot Visualization for Four Obesity 

Categories 
 
We conducted a secondary data analysis of the BMI 
records collected from Boston Children Hospital. Our 
data contains healthy and obese children from 2 years to 
18 years old. We record their corresponding height and 
weight in order to get their BMI over time. The original 
dataset is stored in a long-format. We use R to transform 
them into wide-format, which contains 21150 children. 
However, our dataset is sparse; in other words, not all the 
kids have contact records from 2 to 18 years. Therefore, a 
necessary statistical smoothing technique is applied to 
simulate curves for the sparse BMI data.  

The commonly used methods are linear regression 
(linear, Quadratic, or Cubic regression) and spline model. 
In our setting, we an advanced cubic smoothing spline 
model that simulates the new curves of BMI by borrowing 
information from nearby curves. After getting the fitted 
curve, we do the following in-depth analysis.  

Experts often rely on BMI to determine if a person is 
overweight. The BMI estimates the level of ones’ body fat 
based on their height and weight. Starting at 25.0, the 
higher the BMI, the greater risk they have of developing 
obesity-related health problems. However, a functional 
curve instead of pointwise analysis provides a better 
measurement of obesity. The graphs above show four 
groups of people in different obesity categories. A0 
describes the average normal population while A1, A2, 
and A3 described slightly overweight, obese, and severely 
obese people, respectively. By using the functional 
boxplot based on depth measurement, we have an 
excellent performance of visualizing their BMI trends. 
The function shows the median (black curve in the 
middle), 50% deepest curve (the magenta region), the 
whisker (the boundary for outlier detection), and outliers 
in magnitude (the dashed red line). A comparison of 
Figure 5 is shown in the following. In the spread 
perspective, A0 has the most significant variability, the 

others get narrower and narrower orderly, while A3 has 
the least variability. Another very worth noticing 
phenomenon is the rebound appears, especially in the A0 
group. This means when the kids are about 5 months to 10 
months old, they would learn to walk and do other 
exercises, which would cause a decrease in BMI 
accordingly. But children who are obese do not have this 
trend. The total trend is the BMI increases with age. A0 is 
growing relatively very slowly. However, the fatter 
people were, the faster their BMI increased. The A3 curve 
almost became a straight line that continued to rise with 
the steepest degree. The median of A0 is the smallest, but 
A3 is the greatest. Also, A0 has the most outliers 
compared to others. 

4 Conclusion 

In conclusion people who have obesity are at increased 
risk for many serious disease and health conditions. BMI 
is an estimate of body fat and a good measure of ones’ risk 
for health problems. Based on this point-wise measure, 
the functional BMI is a fast and convenient method to 
represent the obesity conditions throughout the age.  

However, in the real situation, many records for 
children’s BMI are sparse, most of them have only a few 
periods of records but are lack of points in certain ages. 
The main contribution in this paper is that we use cubic 
spline model to estimate the whole throughout their age 
and get a smooth and intact curves for each child. After 
getting the estimated curve, we analyze the processed data 
based on depth measure, which is a powerful tool for 
ranking and outlier detection of functional data. We also 
construct boxplot based on our ranking results for 
different obesity groups and compare their summary 
statistic. A further and thoroughly analysis of association 
between obesity and spare BMI curve is also presented. 
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