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Abstract. How to discriminate distal regulatory elements to a gene target is challenging in understanding 
gene regulation and illustrating causes of complex diseases. Among known distal regulatory elements, 
enhancers interact with a target gene's promoter to regulate its expression. Although the emergence of many 
machine learning approaches has been able to predict enhancer-promoter interactions (EPIs), global and 
precise prediction of EPIs at the genomic level still requires further exploration.In this paper, we develop an 
integrated EPIs prediction method, called EpPredictor with improved performance. By using various features 
of histone modifications, transcription factor binding sites, and DNA sequences among the human genome, a 
robust supervised machine learning algorithm, named LightGBM, is introduced to predict enhancer-promoter 
interactions (EPIs). Among six different cell lines, our method effectively predicts the enhancer-promoter 
interactions (EPIs) and achieves better performance in F1-score and AUC compared to other methods, such 
as TargetFinder and PEP. 

1 Introduction 

Enhancers are key cis-elements that regulate 
spatiotemporal gene expression by contacting with their 
target genes. The existence of enhancers dramatically 
increases the complexity of regulatory networks in human 
and other organisms 1. Therefore, thousands of putative 
enhancers are mapped in mammalian genomes of 
different cell types, which outnumber coding genes 23. In 
many cases, one cognate gene can be controlled by 
multiple enhancers; in turn, one enhancer can also interact 
with more than one target gene 4. These create a 
complicated and nonlinear regulation network. Another 
aspect of increasing regulation network complexity lies in 
that enhancers are often located at a tremendous genomic 
distance away from cognate genes in mammalian and 
other vertebrate genomes. 

In order to better understanding of EPIs, many 
investigations have been conducted to predict EPIs. Some 
algorithms use epigenomic features, such as TargetFinder 
5, EpiTensor. By reconstructing regulatory landscapes 
from different features and integrating hundreds of 
genomics data sets, TargetFinder can accurately predict 
individual enhancer-promoter interactions using the 
features from enhancer, promoter, and window region 
between promoters and enhancer. TargetFinder revealed 

that the window region is more informative than the 
promoter and enhancer region; EpiTensor 13 proposes a 
novel unsupervised computational method to derive 3D 
interactions between distal genomic loci from 1D 
epigenomic data. While some only use a sequence as input 
data and can also gain a high performance to predict EPIs. 
SPEID is the first deep learning framework that only uses 
sequence features to predict the enhancer-promoter 
interaction 6. By integrating four features derived from 
the sequence, gene expression, and epigenomic features, 
IM-PET 8 predicts EPIs with a random forest classifier. 
PEP is an algorithm based on a boosted tree ensemble 
model to predict long-range EPIs. It consists of two 
modules (i.e., the PEP- motif and the PEP-word), which 
use different feature extraction methods. These researches 
also provide insight into how epigenetic features and 
sequences correlated to EPIs.  Different from all the 
above methods, we develop a LightGBM-based algorithm 
to predict enhancer-promoter interactions named 
EpPredictor. Our result shows that the epigenomic 
factors-based features plus the sequence-based features, 
can reliably predict enhancer-promoter interactions and 
achieve better performance in F1-score and AUC when 
compared to TargetFinder and PEP. 
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2 MATERIALS AND METHODS 

2.1 Datasets 

In this paper, we only use the enhancer-promoter pairs 
dataset from the TargetFinder 5, which include enhancer-
promoter positive and negative sample pairs in six cell 
lines (GM12878, K562, IMR90, HeLa-S3, HUVEC, and 
NHEK). The distance between enhancer-promoter pairs is 
between 10 KB and 20 MB. The histone modification and 
transcription factor ChIP-seq datasets are from the 
ENCODE Project, including six cell lines. The histone 
and transcription factor datasets of each cell line contain 
peak and signal value features in their region. 

By analyzing the TargetFinder method's datasets and 
the PEP method, we find that the positive and negative 
samples are quite different, and the negative samples are 
20 times that of the positive samples. However, the 
unbalance of the positive and negative samples will lead 
to biased predictions, which result in overfitting. 
Therefore, we use all positive samples of the TargetFinder 
and randomly extract the same negative samples from the 
negative samples. The ratio between positive samples and 
negative samples is 1:1, thus solving the sample 
imbalance. 

2.2 Determine the region of feature extraction 

It is unclear which regions of the enhancer-promoter pairs 
within a chromosome are useful for predicting EPIs. Our 
dataset of enhancer-promoter pairs is from TargetFinder, 
which provides the enhancer's start point, the enhancer's 
endpoint, the promoter's start points, and the promoter's 
endpoint. Therefore, we define regions for extract features, 
as shown in Fig. 1:  

 
Fig1.   Visualization of the location information of the 

chromosome. 
 
Enhancer Region (ER): region from enhancer start 

point to enhancer end point. 
Window Region (WR): region from the end point 

enhancer to start point of promoter. 
Promoter 2k Region (PR): extend 2k from the right 

side and left side of the start point of promoter. 
Full Region (FR): region from the start point of 

enhancer to the start point of promoter. 
Note that the distance between the start point of 

promoter and the end point of promoter is mostly within 
2k, and to obtain more useful information, we choose to 
extend 2k from the right side and left side of the start point 
of promoter. After defining the feature extracting regions, 
we map these regions location on chromosome and 

protein files, and get related sequences’ and proteins’ 
information. 

2.3 Epigenomic features extraction 

The features of the data are very essential to the algorithm 
model. A set of excellent features can well represent the 
information contained in the data, including invisible and 
explicit information. Thus, the machine learning model 
trained by excellent features can have better accuracy, 
generalization performance, and robustness. We extract 
multiple sets of features across six cell lines. By analyzing 
the distribution of enhancers and promoters on 
chromosomes in different regions at different signal 
values and peaks, we derive multi-group features based on 
protein signal value and peak. All four regions (i.e. ER, 
WR, FR, and PR) contains information about multiple 
sites of a protein. Therefore, it contains multiple sets of 
signal value and peak data. 

2.4 Sequence feature extraction 

Despite the epigenomic features, we also want to extract 
the sequence features from four regions (ER, WR, FR, and 
PR). Our sequence feature extraction method is the weight 
matrix, which is a motif descriptor. This method attempts 
to capture the inherent variability characteristics of the 
sequence pattern. It is usually composed of an equal 
number of sequences associated with a set of functional 
genes. Here we find that the length of each sequence we 
cut into L=20 is the best for predicting EPIs. 

For example, here are the sequences of 3 eukaryotes. 
We tabulate the frequencies observed for each nucleotide 
at each position. The calculation of weight matrix as 
follows: 

Table1. Calculation position weight matrix 

Sequence1 AGTC 

Sequence2 GTAC 

Sequence3 AGCT 

Table2. Position weight matrix 

 1 2 3 4 

A 2 0 1 0 

T 0 1 1 1 

G 1 2 0 0 

C 0 0 1 2 

 
Additionally, each number in this matrix represent the 

number of times that a given nucleotide has been observed 
at a given position. For example, nucleotide "A" has been 
observed in 2 aligned sequences at position 1 and is 
therefore represented as 2 in the matrix. 
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3 Result 

3.1 Choose LightGBM as well as determine the 
region and feature selection 

LightGBM (i.e., LGB) is higher efficiency, lower 
memory usage, and fast training speed algorithm. We do 
some extensive works and compare LightGBM with a 
support vector machine (SVC) 10 and Adaboost 11 under 
the epigenome and sequence features. Fig.2 shows that 
LightGBM achieves the highest F1-score compared to 
SVC and Adaboost in all six cell lines (i.e., K562, 
GM12878, IMR90, HeLa-S3, HUVEC, and NHEK). 
Different features and its related feature extraction 
regions should be carefully considered. We then evaluate 
LightGBM 12 with different features (i.e., DNA sequence 
feature, epigenomic factor feature, epigenomic+sequence 
feature) on four regions, which shows in Table 4 (i.e., ER, 
PR, WR, and FR). 

 
Fig2.  Get the optimal algorithm map. In six cell lines, 

evaluation of F1-score using epigenomic plus sequence 
features in LightGBM, Adaboost, SVC algorithm 

 

3.2 Compare EpPredictor to TargetFinder, and 
PEP 

We use four regions features to evaluate the performance 
of EpPredictor across six cell lines compared to 
TargetFinder and PEP-integrate (Fig.3) in terms of F1-
score AUC and MCC. The result shows that EpPredictor 
achieves better performance in the F1-score than the other 
two methods, named TargetFinder (on ER/PR/WR) and 
PEP (on ER/PR/WR). As details in Table 3, the average 
F1-score achieve by EpPredictor across six cell lines is 
0.88, 5% higher than Target Finder, and PEP (on 
ER/PR/WR) (0.83 and 0.83). The F1-score is a significant 
improvement in all cell lines. In the K562 cell line, the F1-
score of EpPredictor, TargetFinder (on ER/PR/WR), PEP 
(on ER/PR/WR) are 0.91, 0.85, and 0.82, respectively, 
which is increased 6% - 9% by EpPredictor. Also, in the 
GM12878 cell line, the F1-scores of EpPredictor is 0.85, 
which is 4% higher than TargetFinder. 

 
Fig3.  Evaluation of EpPredictor on enhancer-promoter data 

from six cell lines (i.e. K562, GM12878, IMR90, HeLa-
S3, HUVEC and NHEK) in comparison with 

TargetFinder and PEP methods in terms of F1-score 
AUC and MCC. Among them, green, blue, and pink 
represent the TargetFinder, PEP, and EpPredictor. 

 

Table3. Detail performance evaluation of TargetFinder (on ER/PR/WR), PEP-Integrate (on ER/PR/WR) and EpPredictor in six 
cell lines. 

Cell line Method F1-score AUC MCC 
K562 TargetFinder 0.85 0.9 0.84 
K562 PEP-integrate 0.82 0.95 0.81 
K562 EpPredictor 0.91 0.96 0.81 
GM12878 TargetFinder 0.81 0.87 0.81 
GM12878 PEP-integrate 0.84 0.95 0.84 
GM12878 EpPredictor 0.85 0.92 0.69 
IMR90 TargetFinder 0.78 0.86 0.78 
IMR90 PEP-integrate 0.84 0.94 0.83 
IMR90 EpPredictor 0.85 0.93 0.70 
HeLa-S3 TargetFinder 0.87 0.92 0.87 
HeLa-S3 PEP-integrate 0.85 0.96 0.84 
HeLa-S3 EpPredictor 0.90 0.96 0.79 
HUVEC TargetFinder 0.77 0.84 0.76 
HUVEC PEP-integrate 0.75 0.94 0.74 
HUVEC EpPredictor 0.87 0.94 0.73 
NHEK TargetFinder 0.90 0.93 0.89 
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NHEK PEP-integrate 0.88 0.98 0.87 
NHEK EpPredictor 0.92 0.98 0.84 

Table4. In six cell lines, LightGBM algorithm evaluates the size of F1-score in different combinations of epigenomic and DNA 
sequence features in the ER, WR, FR, and PR. 

 
 

The enormous improvement observes in HUVEC, 
where the F1-scores of EpPredictor is 10%-12% higher 
than TargetFinder and PEP. As for the AUC, EpPredictor 
outperforms TargetFinder in the six-cell lines with about 
4%-10% on AUC. and, EpPredictor similar PEP-
interaction in three out of the six cell lines (HeLa S3, 
HUVEK, and NHEK) (0.96, 0.94, and 0.98, respectively) 

The results in Table 4 indicate that LightGBM 
achieves better performance when selecting the 
epigenomic and sequence features. While the 
performance is not as expected if only selecting DNA 
sequence features. From Table 4, we observe that in five 
cell lines (i.e., GM12878, K562, HeLa-S3, HUVE. For 
instance, in GM12878, LightGBM reaches 0.8616, which 
is the best in this column. The only exception is in IMR90, 
where it got 0.8371, which is slightly lower than 0.8418 
under the window region. The full region (FR) is more 
informative than the other three regions when 
incorporating epigenomic and sequence features (Table 2). 

Interestingly, although EpPredictor achieves the 
higher F1-score and AUC, the performance of MCC is not 
as expected. In particular, in IMR90, TargetFinder (on 
ER/PR/WR) and PEP (on ER/PR/WR) achieve 0.81 and 
0.84 MCC, achieve better performance as compared to 
EpPredictor (0.69). One of the classifiers may have a 
higher F1-score value and a lower MCC value, which 
means that a single score cannot measure all the 
classifier's advantages and disadvantages. In summary, 
the EpPredictor has a clear advantage over the 
TargetFinder and PEP in F1-score. This trend also 
maintains in the AUC score. 

4 Discussion and Conclusion 

We developed EpPredictor to predict EP interaction based 
on LightGBM. Compared to other models such as SVM 
and Adaboost, LightGBM achieves higher performance. 

Many methods only use the features from the promoter 
region and enhancer region to predict EPIs. While 
TargetFinder suggests that the window region's features 
are more critical to predict EPIs [13,14,15]. Our methods 
revealed that the full region with sequence and epigenetic 
features is more efficient in predicting EPIs than the 
window region. In order to get better performance, 
EpPredictor integrates epigenomic features which are 
extracted from the four regions (ER/PR/PR/FR) according 
to the information of histone and transcription factor, and 
sequence features which are also extracted from the four 
regions (ER/PR/PR/FR).  
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