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Abstract. Liquid biopsy of cell-free DNA (cfDNA) has attracted much attention for its promise to realize 
pan-cancer detection in a non-invasive way. The whole-genome bisulfite sequencing (WGBS) is widely used 
in cfDNA sequencing analysis and lays the foundation for further study on cfDNA. The cfDNA released by 
multiple tissues carries genetic and epigenetic information. Methylation patterns, copy number variation 
(CNV) and fragmentation changes have been discovered in previous studies and achieved a promising 
accuracy. In this review, different cancer detection methods based on these three biomarkers are introduced. 
In addition, feature fusion is discussed for its potential in enhancing performance in clinical applications. 

1 Introduction 

Cancer-related mortality has increased in recent decades, 
and cancer is expected to become the leading cause of 
death. Despite much improvement in cancer treatment, 
earlier detection still offers the greatest chance of cure, 
supported by the fact that early diagnosed patients have a 
survival rate five to ten times higher than the late stage 
ones[1]. Nowadays, the golden standard for cancer 
detection is tissue biopsy which is popular for its high 
accuracy but being invasive and inefficient. In fact, it may 
cause irreversible damage to patients and can only take 
one tissue sample for detection at a time. Researchers have 
been looking for a non-invasive way to achieve pan-cancer 
detection among people, whose realization may include 
cancer detection into our annual physical examination. 
Recently, cell-free DNA (cfDNA) in plasma has been 
proved to provide an ideal biomarker for pan-cancer 
detection through liquid biopsy. 

The cfDNA refers to double-stranded DNA fragments 
that are released into human plasma from the apoptosis of 
normal cells of the hematopoietic lineage, with minimal 
contributions from other tissues. They exist in bodily 
fluids of humans and have a short half-life, thus can be 
detected easily and carry timely information of certain 
tissues. Discoveries of fetal-derived DNA in plasma of 
pregnant women and donor-derived DNA in 
transplantation patients have introduced cfDNA-based 
noninvasive prenatal testing[2] and transplantation 
monitoring[3]. Recent studies have demonstrated the 
clinical feasibility of cfDNA analysis for cancer screening 
via various ways, like genetic ones focusing on certain 
mutations and epigenetic ones that compare between DNA 
methylation or fragmentation patterns. With more works 
on the sensitivity and specificity of cfDNA liquid biopsy, 
it is believed to become a very promising way in early 
cancer detection. 

2 Whole-genome bisulfite sequencing 
provides comprehensive signatures of 
cfDNA 

Recent developments in next-generation sequencing 
technologies, like RNA-seq and BS-seq, have allowed for 
genome-wide profiling of DNA signatures at single-
nucleotide or single-cell resolution[4, 5]. As the published 
work has mentioned that DNA methylation patterns and 
DNA copy number variations can both suggest an 
abnormal physical state[6], these technologies are adapted 
in liquid biopsy analysis to detect genetic alterations and 
epigenetic changes.  

Different kinds of sequencing technologies vary in 
many aspects, such as experiment protocol and 
bioinformatics analysis. Although some sequencing 
technologies can capture specific cell-free DNA 
signatures, it is still puzzling how informative and high-
quality biological signals can be acquired at a low cost. 
Previous works[7-9] have discussed the superiority of a 
sequencing technology called whole-genome bisulfite 
sequencing (WGBS), which is capable of simultaneously 
providing multiple biological signals, like DNA 
methylation and fragmentation patterns, as well as copy 
number variations. 

For WGBS, genomic DNA libraries are created and 
subsequently bisulfite converted, sequenced, and aligned 
to the reference genome. In bisulfite sequencing, 
denatured DNA is subjected to bisulfite treatment during 
which the unmodified cytosine is converted to uracil, but 
a methylated cytosine remains unchanged, thus allowing 
base resolution detection of cytosine methylation.  

WGBS data preprocessing contains several steps. First, 
the sequencing FASTQ data should be checked for quality 
control using FATSQC[10], during which the low 
quantity samples are deleted for a convincing analysis. 
Then, the adapter should be detected and removed. An 
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adapter is added to the DNA fragment before sequencing. 
However, the adapter itself does not belong to the 
fragment, hence its deletion before alignment, otherwise it 
will be regarded as part of the original fragment and will 
further lead to whole fragment being discarded. This will 
result in the ignorance of the fragments which may come 
from cancerous cells[8]. Some bioinformatics toolkits like 
AdapterRemoval[11] and Trim Galore[12] can tackle this 
problem properly. Finally, the bisulfite sequencing reads 
should be aligned to human genome. It should be noted 
that the bisulfite sequencing reads are not complementary 
to the reference genome acid because of C-T conversion. 
These facts add complexity to bisulfite sequencing and 
render conventional alignment tools, such as Bowtie2[13] 
or Burrows-wheeler aligner[14], unsuitable. Several new 
computational tools have been developed to address this 
issue, like BSMAP[15] and Segemehl[16], which 
enumerate all C to T combinations, or BISMARK[17] and 
BS-Seeker[18], which convert all C to T in both sequenced 
reads and genome reference before alignment. 

There are several issues to be noted in WGBS. First, 
the timing of bisulfite treatment in WGBS matters because 
the process of bisulfite conversion includes a high 
temperature, high salinity, acid, and alkaline environment, 
during which more than 90% of the DNA templates are 
damaged. Therefore, traditional WGBS needs a large 
amount of input data and outputs low effective reads. One 
way to improve the efficiency of bisulfite sequencing is to 
construct the library after the bisulfite conversion is done 
(Post-Bisulfite Construction, PBC). This strategy can 
greatly increase template utilization and richness, since 
damaged DNA fragments can still be included into the 
library. Notably, PBC strategy changes the original DNA 
fragment length, thus WGBS data with PBC strategy 
cannot be used in DNA fragment size analysis. Second, 
there is a conversion rate of each bisulfite conversion, and 
it changes according to experimental protocols and 
specific operations. Generally, over 90% of the 
unmodified cytosine is converted to uracil, and the rest 
will be regarded as methylated cytosine. Accordingly, the 
conversion rate has a non-negligible impact on the DNA 
methylation patterns in the sequencing result. For example, 
if the actual conversion rate is lower than expected, the 
methylation rate will be falsely high because of the 
unexpected cytosine that is not methylated but remains 
unchanged. 

3 Signatures in WGBS for cancer 
detection 

Recent studies have shown that many DNA changes 
founded in tumor tissue could also be identified in cell-
free DNA, like DNA methylation and copy number 
variations. Furthermore, specific cfDNA features are also 
founded like DNA fragmentation profile changes. In the 
following scenarios, features commonly used in cancer 
detection of cfDNA sequencing data will be discussed.  
 
 
 

3.1 Methylation pattern changes in cfDNA of 
cancer patients 

DNA methylation is a ubiquitous phenomenon and linked 
to the developmental state and cellular differentiation 
processes in mammalian organisms. It is a kind of DNA 
modification through which genetic alterations can 
happen without sequence changes. It involves the addition 
of a methyl group to position 5 of the DNA cytosine rings 
by DNA methyltransferase enzymes and usually occurs at 
CpG dinucleotide sequences in mammals[19]. Generally 
speaking, CpG sites scattered on the genome are usually 
hypermethylated, while those areas with higher than 
average density of CpG (also known as CpG island) tend 
to be relatively hypomethylated. Research has found that 
erroneous DNA methylation may change gene expression 
patterns through different mechanisms, some of which are 
likely to be a driver of certain types of cancer. In fact, 
DNA hypermethylation is a widespread mechanism for 
the silencing of tumor suppressor genes in human cancers, 
and it is estimated to be as common as mutation. Also, 
DNA hypomethylation, which has been proved to cause 
chromosome instability, can be a driver factor to cancer 
formation[20]. Therefore, the DNA methylation pattern 
has great potential as a biomarker for cancer detection. 
DNA methylation signatures can be found in blood from 
cfDNA, which is released during cell apoptosis, and they 
are highly consistent between cfDNA and genomic DNA 
from its tissue origins. Many existing works have 
investigated specific methods of liquid biopsy for cancer 
detection. 

Sun, et al. developed a statistical approach for studying 
the major tissue contributors to the circulating DNA 
pool[21]. The work identified 5820 specific methylation 
regions from 14 human tissues. These well-defined 
marker loci are highly variable between different tissues. 
Therefore, plasma DNA signal can be deconvoluted into 
different tissue components. The method was tested on 
pregnant women, patients with hepatocellular carcinoma 
and subjects following bone marrow and liver transplant. 
All these scenarios showed significant results to reveal the 
strong correlation between the methylation deconvolution 
and single tissue markers. In addition, Moss, et al. reported 
a similar approach for unbiased determination of the tissue 
origins of cfDNA[22]. Not like the method proposed by 
Sun, et al., Moss, et al. took a single CpG site as the 
deconvolution marker based on Illumina Infinium Human 
Methylation 450K or EPIC BeadChip arrays. What’s more, 
this work made a comparison between cell-type and 
whole-tissue reference methylomes and found the former 
had a better performance, which highlighted the 
importance of using a comprehensive and cell type-
specific DNA methylation atlas for sensitive detection of 
rare contributors to mixed methylomes. 

Li, et al. proposed a cancer detection method termed 
“CancerDetector”[23]. It probabilistically modeled the 
joint methylation states of multiple adjacent CpG sites on 
an individual sequencing read and achieved the 
ultrasensitive resolution which can identify a trace amount 
of circular tumor DNA in plasma. It had a promising 
performance in both simulation experiments and real data 
tests. However, the work depends on an iteration step to 
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delete ambiguous markers which may cause a serious bias 
in circular tumor DNA burden estimation.  

In comparison with other biomarkers for liquid biopsy 
cancer detection, DNA methylation patterns have two 
superior features that promise its great potential. First, 
DNA methylation signature is highly tissue-specific and 
has low individual differences. Second, as an epigenetic 
change, DNA methylation signature is more consistent in 
cancer. These two features allow for a systematic 
diagnosis method with high applicability.  

3.2 Copy number variations can be detected in 
cfDNA 

The copy number variation (CNV) refers to the 
phenomenon that sections of the genome are erroneously 
repeated or deleted during DNA replication. It affects a 
great number of genes, some of which are key functional 
regions that affect gene expression. Therefore, CNV can 
lead to various pathological states. Down syndrome and 
Huntington’s disease are typical representatives of this 
type of disease. Existing research has proved the 
correlation between CNV and a certain type of cancers. 
Hence, CNV is a prognostic biomarker for cancer 
detection.  

Chen, et al. made a comparison of whole-genome 
sequencing (WGS) at different sequencing coverage and 
demonstrated the feasibility of using low-pass whole-
genome sequencing (LP-WGS) to detect CNVs in cfDNA 
and estimate tumor fraction in the plasma of patients[24]. 
This work shed light on numerous applications, since LP-
WGS offers an unbiased and high-throughput way to 
study genome-wide CNVs that are cancer-related. It is 
also valuable for identifying novel CNVs as prognostic or 
predictive biomarkers. Because LP-WGS is relatively 
cost-effective, CNV analysis is also suitable for initial 
signal screening and continuous monitoring after 
treatment. Further, Jiang, et al. used larger scale CNV 
signals to distinguish HCC patients from healthy 
person[8]. This work focused on the deletion of 
chromosomes 1p and 8p and the amplification of 
chromosomes 1q and 8q, which are commonly observed 
in the HCC tissues. They quantified copy number gains or 
losses by chromosome arm-level z-score analysis (CAZA). 
The analysis outputs a z-score, whose value identifies 
whether the DNA fragment shows a certain CNV. In this 
study, the CNV was regarded as a tool for HCC detection, 
and it partially reflected that the CNV as a biomarker was 
relatively mature in comparison with other features like 
DNA fragmentation profiles. 

CNV as a biomarker for cancer detection is a relatively 
well-studied one, and efforts have been made in the recent 
years to achieve greater specificity and sensitivity. Allen 
Chan, et al. demonstrated the upgrade in specificity and 
sensitivity of hypomethylation analysis after taking the 
CNV patterns into consideration. In the future, CNV is 
still a very potential biomarker for cancer detection. 

 
 
 

3.3 Unique cfDNA fragmentation profile reveals 
cancer identity 

The cfDNA released into plasma through cell apoptosis 
has different lengths. Research has shown that these 
fragments have nonrandom fragmentation patterns. For 
instance, peaks at around 147bp and 167bp correspond to 
nucleosomes and chromatosomes (nucleosome + linker) 
respectively[25]. This kind of feature shows difference 
between cancer patients and healthy person. Therefore, 
many efforts have been paid into this area. 

Jiang, et al. designed an effective way (described in 
section 3.2) to utilize DNA CNV patterns to distinguish 
tumor-derived DNA fragments from non-tumor-derived 
ones, and massive parallel sequencing enabled them to 
measure the length of every individual plasma DNA 
molecules. It turned out that plasma DNA molecules 
bearing tumor-associated CNAs were shorter than those 
not carrying such signatures, and the length got even 
shorter when the fractional concentrations of tumor DNA 
in plasma increased[8]. However, patients with low 
fractional concentrations of tumor DNA plasma showed 
longer DNA fragmentation length in comparison with 
healthy controls. Jiang, et al supposed that it was because 
more non-tumor-derived DNA fragments were released 
from necrosis instead of apoptosis, which was consistent 
with the former work that reported longer DNA fragments 
from tissue necrosis than normal apoptosis. Further, a 
study was proposed to enhance the sensitivity for 
detecting the presence of circulating tumor DNA (ctDNA) 
by utilizing differences in fragment lengths of circulating 
DNA[26]. Notably, this work proposed an alternative 
deeper sequencing of cfDNA by combining LP-WGS 
(0.4X) and selective sequencing of specific fragment sizes. 
Plus, with predictive models integrating fragment length 
and CNV, the area under the curve (AUC) achieved more 
than 0.99, in comparison with that less than 0.80 without 
fragmentation features. 

Snyder, et al. proposed a brand-new mechanism to 
distinguish between contributing tissues[25]. Unlike 
traditional methods that used genetic differences as a 
standard of distinction, Snyder, et al. made a hypothesis 
that the fragmentation patterns observed in an individual’s 
cfDNA might contain evidence of their tissue-of-origin. 
The work built a map of nucleosome occupancy in human 
cells genome-wide with deeply sequenced cfDNA data. 
Then, comparisons of gene expression and regulatory site 
profiles were carried out, through which the epigenetic 
signatures of hematopoietic lineages contributing to 
cfDNA in healthy individuals were identified, with 
plausible additional contributions from one or more non-
hematopoietic tissues in a small panel of individuals with 
advanced cancers. Although the work was not necessarily 
superior to mutation-based monitoring of ctDNA in 
sensitivity, but it envisioned a unique application of non-
invasively classifying cancers at the time of diagnosis, 
simply by matching the epigenetic signature of cfDNA 
fragmentation patterns with reference datasets 
corresponding to diverse cancer types. It may also help the 
research of non-malignant conditions like myocardial 
infarction and stroke.  
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Sun et al. further explored the clinical potential of 
cfDNA fragmentation patterns[9]. The work reported that 
in open chromatin regions, cfDNA molecules showed 
characteristic fragmentation patterns reflected by 
sequencing coverage imbalance and differentially phased 
fragment end signals that preferentially occurred in tissue-
specific open chromatin regions where the corresponding 
tissues contributed DNA into the plasma. Quantitative 
analyses of such signals allowed measurement of the 
relative contributions of various tissues toward the plasma 
DNA pool and thus, proposed a new method for 
nucleosome positioning profiling and quantitative 
determination of the relative contributions of various 
tissues in plasma DNA by fragmentation pattern analyses. 
These findings were validated by plasma DNA obtained 
from pregnant women, organ transplantation recipients, 
and cancer patients.  

DNA fragmentation length has shown its great 
potential as a biomarker for liquid biopsy of cancer 
detection; however, this field is still in its infancy and 
further developments are necessary before clinical 
implementations. 

4 Feature fusion in cancer detection 

The aforementioned works primarily focus on single 
feature to distinguish cancer patients and the healthy. 
However, due to the heterogeneity of cancers, it is hard to 
detect all patients accurately from only one feature. 
Different features combining can provide more 
information, so it is more likely for models considering 
more features to achieve a better performance. In addition, 
paired end WGBS with pre-BS strategy can acquire DNA 
methylation, CNV, and fragmentation information 
simultaneously, so from a cost perspective, it is acceptable 
to comprehensively utilize all the available information. 
Some works have pioneered in this direction. 

Jiang’s work[8] mentioned before proposed a creative 
way to combine DNA CNV and fragmentation 
information. DNA CNV information is relatively well-
studied, therefore, the work used it as a standard to 
differentiate tumor-derived DNA fragments from non-
tumor-derived ones. This classification laid the foundation 
for follow-up research on DNA fragmentation length, 
which is still controversial. With such combination, this 
work provided a rather convincing result about DNA 
fragmentation patterns in cancer patients, and it is a good 
example for feature fusion in cfDNA research.  

Another existing case for feature fusion is Mouliere’s 
work[26]. Unlike Jiang’s work mentioned above, 
Mouliere used DNA fragmentation patterns as a 
biomarker for initial screening. In fact, the work 
established a tumor-guided personalized deep sequencing 
based on size distribution of ctDNA, and identified 
clinically actionable mutations and copy number 
variations that were otherwise not detected with low-pass 
WGS. Then a predictive model integrating fragmentation 
length and CNV information improved the identification 
of patients with advanced cancer, with the area under the 
curve (AUC) more than 0.99 compared to that less than 
0.80 without fragmentation features. Increased 

identification of cfDNA from patients with glioma, renal, 
and pancreatic cancer was achieved with AUC more than 
0.91 compared to that less than 0.5 without fragmentation 
features. 

Xu Z, et al. built a model named GUseek for 
genitourinary (GU) cancer detection[27]. Notably, 
GUseek integrated DNA methylation and CNA features 
together to construct binary classifiers and multiclass 
classifiers. It can distinguish patients with GU cancer from 
healthy people, as well as tell apart UC, PRAD, and KIRC 
patients. GUseek took open-access database information 
as well as shallow whole-genome bisulfite sequencing 
data to evaluate CNA and DNA methylation profile 
changes and select features with multiple principles. The 
binary classifiers were able to diagnose GU cancer with an 
average accuracy of more than 95%, and the multiclass 
classifier could further distinguish different kinds of GU 
cancers with a total accuracy of 90.57%. What’s more, the 
performances of GUseek between early- and late-stage 
cancer were similar, which indicated its potential in early-
stage cancer detection and location.  

These existing works have proved the feasibility of 
feature fusion in cfDNA cancer detection. However, it is 
still in the starting stage. Some work, like Jiang’s and 
Mouliere’s mentioned above, utilized two features in the 
whole designing process, but only one was actually taken 
as the biomarker during detection. GUseek was a good 
example for feature fusion. Similarly, Chan, el al. has 
enhanced the performance of multiple diagnostic models 
of DNA methylation patterns with CNV information[24]. 
It turns out that it is not only a more accurate way for 
cancer screening, but is more cost-effective as well.  

As our knowledge about different cfDNA biomarkers 
becoming more comprehensive, it is reasonable to pay 
more attention to feature fusion of these biomarkers. It 
would be very tempting to utilize modern technologies 
like deep learning in cfDNA detection, which are expected 
to make revolutionary advancement in the field. 

5 Discussion 

Liquid biopsy of cfDNA has shown its potential in non-
invasive pan-cancer detection, which is expected to offer 
earlier diagnose and thus, a better chance for cure. WGBS 
provides us with multiple biomarkers information to 
interpret cfDNA signals. Efforts have been made in each 
biomarker to achieve better performance, and this article 
summarizes some of the representative works to provide 
readers with an overview of the field. The DNA 
methylation pattern is a relatively traditional and well-
studied biomarker. It is highly specific among different 
types of tumors and is conservative among different 
individuals, thus being very ideal for clinical cancer 
screening. DNA methylation patterns are now being 
analyzed primarily under two methods, namely the linear 
regression-based deconvolution model and the statistical 
model-based DNA fragment classifier, and many attempts 
have been made to improve the accuracy of models. 
Similarly, CNV change is also mature and has already 
been applicable in real situation, like prenatal testing and 
transplantation monitoring. Researchers have tried from 
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different angles to interpret CNV data so as to extract more 
information from a minimal amount of cfDNA. For 
example, unlike traditional bin-level models that focus on 
a single DNA base as the evidence of CNV, the arm-level 
model integrates more information and pushes the 
accuracy to a new level. Besides, DNA fragmentation 
patterns is a novel biomarker that seems to have a 
promising future. It contains new independent information 
from CNV or methylation patterns, providing a brand-new 
insight into cfDNA.  

Until now, liquid biopsy of cfDNA has been used in 
many clinical scenarios, like prenatal and transplantation 
assessment. In comparison, the application in cancer 
detection is not yet popular. The major reason is that liquid 
biopsy of cfDNA for cancer detection still suffers from 
accuracy anxiety. To be more specific, as an early 
screening tool for cancer, it is acceptable to be imperfect 
in specificity, which at most requires for more rounds of 
the test, but insufficient sensitivity will greatly lower its 
application value. This dilemma is because our research 
on biomarkers of cfDNA is still in a correlation level. For 
example, it is still hard to pinpoint whether methylation 
changes are the driving factor in tumorigenesis, or just 
being the consequence. Lack of understanding in 
biological mechanism to some extent sets the ceiling for 
improvement of accuracy. With the ceiling existed, it is 
important for us to take full advantage of the processed 
information. In other words, how to realize feature fusion 
of cfDNA biomarkers is likely to be an important 
breakthrough in the field. It would be very interesting and 
of great potential in early diagnosis of cancer to explore 
more methods to combine the information and show a 
more comprehensive picture of cfDNA.  
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