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Abstract. We consider the new class of high precision simplified linear 
models of transient high-pressure gas flows along linear sections of 
pipelines. Representatives of this class are obtained from different initial 
models defined by partial differential equations. The new models are based 
on the exact solution of the Klein-Gordon equation, which appears as a result 
of piecewise linear approximation of nonlinear models in the form of 
Charny's equations [1–4] or piecewise constant approximation in models 
that describe deviations of pressure and mass flow rates from their values in 
the basic stationary mode [10–13, 16–17]. The new class of models has 
significant advantages over nonlinear simplified models in optimization 
problems of large-scale networks, reducing the calculation time by more 
than two orders of magnitude. They are also free from errors of the 
approximate inverse Laplace transform or dimensionality reduction 
techniques traditionally applied in such situations. 

1 Introduction 
The emergence of cheap gas significantly changes its role in the energy sector of developed 
countries. In addition to the traditional technological reasons [1], variations of gas flow in 
high-pressure pipelines have systemic reasons as well. They relate fluctuations in the gas 
supply market and the growing frequency of connection and disconnection of gas-consuming 
electric generators, which compensate for the intermittent production of wind and solar-based 
energy. In this regard, the need for analysis, control, and optimization of gas flows in high-
pressure gas pipelines with complex structure increases significantly. Often, the time allowed 
for analysis and making operational decisions is limited. Therefore, efficient models of 
unsteady gas regimes and high-speed algorithms are essential. 

The paper has a structure as follows. Section I provides a brief overview of simplified 
models of transient gas motion described by equations with lumped parameters. Section II 
describes the methods of piecewise linear and piecewise constant linearization leading to the 
Klein-Gordon equation. In section III, we present the solution of the Klein-Gordon equation 
using Green's functions. Its features are studied as applicable to gas problems. Section IV 
discusses a method for reducing the dimensions of the constructed models without 
compromising their accuracy. Section V describes the application of the developed models 
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to real gas flows. It takes into account the non-isothermal nature of the processes and 
describes numerical experiments. 

2 A brief overview of lumped parameter models 
Simplified lumped models of unsteady gas motion have emerged as a tool to speed up 
computations over partial differential equations (PDE) models. In simplified models, 
pressure, and mass flow values are analyzed only at the ends of the pipe segments. For many 
tasks of analysis, optimization of gas flows, and their control, this is quite acceptable. Such 
models for a linear section (simple gas pipeline [1]) can be described by time-dependent 
algebraic equations [1, 2], linear [14-16] or nonlinear [9] ordinary differential equations or 
their systems, transfer functions [6, 10, 17], systems of algebraic linear equations [8] in cases 
of discrete-time models. 

2.1 Nonlinear simplified models  

Apparently, the first model with lumped parameters was proposed in [2]. It is based on 
experiments showing that in a wide range of transient processes, the hydraulic resistance 
coefficient does not change much. The experimental results and details of this model are 
presented in [2]. An important property of the nonstationary algebraic model is its exact 
coincidence with the stationary model in case of a steady-state regime. An extension of this 
model and its use for non-isothermal processes is described in [5], which includes the 
overview of the publications in Russian on simplified models as well. The publication [9] 
describes another nonlinear model having the form of an ordinary differential equation. In 
stationary mode, it provides an accurate solution as well. Model [9] becomes stationary if we 
equate the derivative with respect to time to zero. An important requirement leading to the 
model [9] is the preliminary segmentation of a linear pipe section with segment lengths less 
than 5 km. The model is created for each pipeline. It uses the Lagrange theorem from 
calculus. The value of the derivative in this theorem is selected to obtain the exact solution 
in the stationary mode. Despite the high quality of nonlinear models in stationary modes, 
they also have drawbacks: it is difficult to solve effectively optimization problems effectively 
with nonlinear models in large gas transmission networks. Preliminary segmentation sharply 
increases the dimensionality of the system of equations being solved. The program that 
implements the solution of optimization problems on a dynamic nonlinear model [9] is 
described in [19] and is the open-source software. 

2.2 Linear simplified models  

Linear models for unsteady gas regimes can be divided into three groups. The first group, 
described in [15, 17], is based on dimension-reduction algorithms for linear dynamical 
systems. Therefore, the corresponding models are built in two stages. First, the initial time 
horizon and pipes used in the nonlinear model for the transient gas flows are divided into 
small steps and intervals. Then, the model dimension is reduced by one of the well-known 
methods. It is difficult to estimate the error of such models, although some specific examples 
of calculations look good in comparison with exact solutions for PDE obtained by classical 
numerical methods. 

Another group of linear simplified models "starts" with a linearized model describing 
unsteady gas motion for deviations of pressure and mass flow along a linear section from the 
corresponding stationary values. These equations by themselves are already approximate. 
They can be obtained in many ways and differ slightly from each other. Usually, they are 
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associated with the expansion of nonlinear terms in a Taylor series in equations like Charny's 
equations [3, 4] in terms of deviations and discarding all terms of the second-order smallness 
and higher. The first work of this kind is [10] and the authors of subsequent works [11–14, 
16] use it as a baseline. A valuable tool in these works is direct and inverse Laplace 
transforms. The latter is usually associated with a significant level of errors that is difficult 
to avoid. 

3 Linearization methods leading to the Klein-Gordon equation  

The equations for an isothermal unsteady gas motion for a simple pipeline in 
the Charny form [3, 4] are 
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𝜌𝑣|𝑣| − 𝜌𝑔𝑠𝑖𝑛𝜃,	 (2) 

𝑝 = 𝜌𝑍𝑅𝑇 = 𝑐�𝜌,                                       (3) 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑡�                                (4) 

Here, the state variables 𝑣,	𝑝, and 𝜌 represent the velocity, pressure, and density of the 
gas, respectively. They depend on time	𝑡 ∈ (0, 𝑡�) and spatial coordinate 𝑥 ∈ (0, 𝑙). 
Parameter 𝑙 is pipe length, 𝜃 is the constant angle of the inclination of the pipe, 𝑔 is the 
acceleration of gravity, 𝜆 is coefficient of hydraulic resistance. This is a dimensionless 
parameter characterizing friction. The rest of the parameters describe the inner diameter 𝐷 of 
the pipe, 𝑍, 𝑅 and 𝑇 are the coefficient of compressibility, the special gas constant, and the 
absolute temperature of the gas respectively. In the general case 𝑍 = 𝑍(𝑝, 𝑇), but we will 
temporarily assume that 𝑍 = 𝑐𝑜𝑛𝑠𝑡. In Section V, we will omit this restriction as well as the 
isothermal condition. The value 𝑐 = √𝑍𝑅𝑇 in the first approximation can be considered as 
the speed of sound in the gas. Because the term 𝜕(𝜌𝑣�)/𝜕𝑥 in (2) is small we will discard it 
in following transformations 

Imagine that the linear section under consideration consists of a sequence of 𝑁 short 
segments. Then equations (1) – (4) are applicable to each segment. Let assume that for the 
𝑖�� segment 𝑣�� ≈ 𝑘�𝑣� + χ𝑖, 𝑖 = 1,2, … , 𝑁. Let 𝑞 = 𝑆𝜌𝑣 is the mass flow rate of the gas 
flowing through a constant cross-section 𝑆 of the pipe. Then, after simple transformations, 
system (1) – (4) for each segment transforms into a linear second-order hyperbolic equation 
of the form 
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+ 𝑔	𝑠𝑖𝑛𝜃,      (6) 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑡�                           (7)	

The initial and boundary conditions 
𝑞 = (𝑥, 0) = 𝑓�(𝑥) ,				 �

��
𝑞(𝑥, 0) = 𝑓�(𝑥)       (8) 

𝑞(0, 𝑡) = 𝜑�(𝑡),			𝑞(𝑙, 𝑡) = 𝜑�(𝑡)                   (9) 
provide the uniqueness of the solution of Eq. (5). 
The parameters of the piecewise linear approximation of the parabola 𝑦 = 𝑣� in (2) can 

be found if, for example, the basic stationary mode for the considered linear section is known. 
Publication [8] describes this procedure in detail. We will name the model (5) – (9) as Model 
A. 

Consider now the Model B, which also leads to an equation (5). Model B contains 
functions        

𝛿𝑝(𝑥, 𝑡) = (𝑝(𝑥, 𝑡) − 𝑝��)/𝑝�� ≪ 1  and 𝛿𝑞(𝑥, 𝑡) = (𝑞(𝑥, 𝑡) − 𝑞�)/𝑞� ≪ 1  (10) 
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Here 𝑝��	is the pressure of the base stationary mode at the beginning of the segment, 𝑝��  
is the average pressure, and 𝑞� is the value of the mass flow rate in the stationary mode. 
Model B has the form 
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= 𝑎�𝛿𝑞 + 𝑎�𝛿𝑝 + 𝑎�     (12) 
It is obtained from (1) – (3) if we define	𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) from (10), substitute them in 

(2), taking into account 𝑞 = 𝑆𝜌𝑣, and remove all terms of the order 𝑜(𝛿𝑝), 𝑜(𝛿𝑞) and above. 
The formulas for the corresponding coefficients in (11) – (12) are determined in the process 
of transformations. It is easy to exclude the function 𝛿𝑝(𝑥, 𝑡) from (11) – (12). As a result, 
we again come to equation (5), but now its coefficients depend on the coefficients from (11) 
– (12). Thus, equation (5) with initial conditions (8) and boundary conditions (9) describe 
both models.  

 In the next sections, we will have a deal with the Model A only, but all results remain 
the same and for Model B with obvious replacement pressures and flow rates by 
corresponding their variations. 

4 The Klein-Gordon equation for transient gas flows and its 
analytic solution using Green's functions 
An analytical solution to equation (5) with the corresponding initial and boundary conditions 
may be obtained in diverse ways. The simplest way is to apply a change of variables that 
reduces (5) to the Klein-Gordon equation [6, 7] 
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The solution to the Klein-Gordon equation (13, 15–16) has the form [6,7]  
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Formula (14) allows finding the solution ( , )q x t of equation (5). Having received 
( , )q x t  we can get the pressure ( , )p x t  from (1). 
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Formula (14) allows finding the solution ( , )q x t of equation (5). Having received 
( , )q x t  we can get the pressure ( , )p x t  from (1). 

Important note. 
The physical process of gas flow cannot contain hyperbolic sines in (19). They can be 

avoided by choosing a small enough segment with length 𝑙 that satisfies the inequality 0 <
𝑙 < 𝑐𝜋/�|𝑏|.  This condition forms the segmentation rule. Typically, the length of a segment 
about 5 kilometers is OK, but it can be much longer.  

5 The discrete linear transient flow models and dimensionality 
reduction without accuracy compromising 

Considering the solution (17) at discrete moments of time and assuming that values	𝑢(0, 𝑡)  
and	𝑢(𝑙, 𝑡) for each time interval are presented as piecewise constant, the integrals in (17) 
can be presented in closed form. This significantly accelerates the computational procedures 
because in such case the connection 𝑞(0, 𝑡),	𝑞(𝑙, 𝑡), with 𝑝(0, 𝑡) and 𝛿𝑝(𝑙, 𝑡), at discrete 
moments of time is described by the matrix equations 

                          (20)     

                         (21) 

Here  are 𝑁 − dimensional vectors, 𝑁 is the number of time intervals.  

 are the inlet and outlet pressures  respectively and  are inlet and outlet mass 

flow rates,  are vectors determined by the initial conditions,  
are triangular constant 𝑁 × 𝑁 matrices, calculated from the analytical solution. 
 

Consider two adjacent segments with models of the form (20) – (21). 
Left segment                       Right segment 

  

                

Then the linear model for joining both segments has the same shape where 
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Sequential merging of adjacent segments allows to return to the original pipe, i.e. 
segmentation does not increase the dimension of the original model. This is especially 
important for the performance of applications. 
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6 Application of the developed models to real gas and non-
isothermal processes, information on numerical experiments  

The initial stationary mode for the case of   changing with   and non-isothermal modes allow 
choosing the segmentation of the linear section so that for each segment it is possible to 
assign its own constant value of the gas temperature and compression ratio and obtain a 
solution for this segment. The segment convolution procedure described above makes it 
possible to obtain linear models of unsteady gas regimes that satisfactorily describe the non-
isothermal the motion of real gases in pipelines. 

We implemented described above approach into the GATRO (GАs Transportations 
Optimization) software package. GATRO uses described models for optimization of large-
scale gas transportation networks including multiple compressor stations. We made 
numerical experiments to estimate the GATRO performance for the real gas pipeline system 
in the United States with a total pipe length of about 600 km. The system contains 90 
pipelines, 78 nodes, and 4 compressor stations. We compared the performance and results of 
calculations for the same gas network with GRAIL [19]. GRAIL is an open-source software 
solving gas network optimization problems. It works with simplified nonlinear gas flow 
models. It is currently the fastest program in this category. Optimization time interval: 48 h. 
The table below compares the results. 

 
Software Optimizer Time of 

optimization 
GRAIL IPOPT 240 s 

GATRO GUROBI 1.5 s 

The by the GATRO and GRAIL methods are described in [8].  
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