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Abstract. The article is devoted to the problems of calculating the 
distribution of flow quality parameters over the elements of the hydraulic 
system. The main attention is paid to the problem of such a calculation in 
the presence of closed circulation circuits in the system, when traditional 
methods and algorithms become ineffective. Mathematical models of the 
distribution of quality parameters are given, the results of the analysis of 
their properties in the presence of closed circulation circuits are presented. 
Against the background of the analysis of the applicability of general 
mathematical methods for solving the problem, two new methods are 
proposed based on the special properties of this problem - the "iterative 
topological" algorithm and the "algebraic-topological" method. Both 
methods are universal and provide a solution in the presence of closed 
circulation loops, and in their absence they coincide with the traditional 
"topological" algorithm.  

1 Introduction 
The relevance of a special consideration of the problems of analyzing the properties of 
flows in pipeline and hydraulic systems (PLS) of various types and purposes is determined 
by the following main circumstances. 

1. To date, a critical mass of tasks has been accumulated that can be attributed to this 
class: 1) calculation of the temperature regime in the TPM of heat, oil, gas, steam supply, 
technological purposes, etc. [1 – 3, etc.]; 2) distribution of physical and chemical 
composition of multicomponent flows of gas, oil, oil products, etc .; 3) the distribution of 
quality parameters [4 etc.] (chlorine concentrations in water supply systems, mechanical 
and chemical impurities in oil supply systems, oxygen concentrations in heat supply 
systems, etc.) and in many other cases. All of them are united by the fact that, given the 
properties of the flows entering the system, it is required to determine the distribution of 
these properties over all its elements. 

2. Recently, in connection with new market conditions, there has been a revival of 
interest in the problems of calculating nodal prices [5, 6 etc.], due to some flow distribution 
at given prices on the sources of the working environment. These problems by their 

                                                
* Corresponding author: pipeline@isem.irk.ru. 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 219, 01004 (2020)	 https://doi.org/10.1051/e3sconf/202021901004
Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic 
Systems 2020



mathematical nature almost completely coincide with the noted problems of calculating the 
distribution of the physical and chemical properties of the working environment. Their 
applied significance consists, for example, in substantiating technical conditions for 
connecting new consumers.  

3. Such a special study seems appropriate not only for the purpose of streamlining the 
accumulated experience and its generalization to flows of different nature (material, energy, 
financial, etc.), which are carriers of different properties (temperature, density, viscosity, 
impurity concentrations, physicochemical composition, prices, etc.), but, mainly, for 
entering new problems of analysis and synthesis of flow properties, analysis of 
controllability of the pipeline system, etc. 

4. The main obstacle to such a generalization is that traditional “topological” algorithms 
for analyzing the distribution of flow properties do not always work. In particular, if there 
are closed circulation circuits (CCC) in the network, when there are no nodes with known 
inflow temperatures at the initial or intermediate steps of the algorithm. At the same time, 
the organization of the CCC in many cases should be considered as one of the ways to 
maintain the required parameters of the quality of the working environment (temperature 
potential in heating networks, chlorine concentrations in water pipes, etc.). 

An initial attempt to formalize the problems of analyzing the distribution of endogenous 
properties of flows in hydraulic circuits (HC), as a relatively independent class of problems, 
was undertaken in [7]. The main attention in it was paid to the problems of analyzing the 
spectrum of flows, that is, the problems of distributing several properties along the HC at 
once, which are generated at the points of entry of the working environment. The 
conditions for the solvability of these problems were revealed, including for cases of loss of 
performance of topological algorithms, and also algebraic methods of solution related to the 
solution of systems of equations were proposed. 

This article is devoted to the results of the study and generalization of models and 
methods for analyzing the distribution of properties of flows in hydraulic circuits with 
CCCs. The main goal of the study is the development of unified algorithms that are equally 
effective both in the presence and in the absence of CCC. 

2 Algebraic models and the problem of analyzing quality 
parameters 
We will call a parameter that characterizes a certain property of the working environment, a 
quality parameter. The design scheme of the HC is given in the form of an oriented 
connected graph, the orientation of its arcs is brought in accordance with the directions of 
flows, and the branches with zero flow rates are removed from the scheme. HC is open (i.e. 
there is an exchange of flows with the environment). 

Let: j  – quality parameter in the node j ; Τ – m -dimensional vector of these 
parameters; m  – number of HC nodes; Н К,τ τ – n -dimensional vectors of quality 
parameters at the start and end points of the branches, such that the following condition of 
the balance of quality parameters on the branches is observed 

К Н ( ) τ τ φ х ,                                                          (1) 

where x  is the flow rate vector on the branches with components , 1,ix i n , and n  is the 
number of HC branches. 

Let be Н К A A A  the complete m n  incidence matrix of the nodes and branches of 
the HC, be the Н К,A A  – matrices that fix (by unit elements) separately the incidence of 
the HC branches to their initial and final nodes, respectively [1,7]. Then the condition for 
complete mixing of the working medium has the form  
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Н Н
Tτ A Τ .                                                                       (2) 

Also, let: Τ – m -dimensional vector of quality parameters of external inflows, 
moreover 0j

  , if there is no external inflow at the node j ; Q , Q  – m -dimensional 
diagonal matrices of nodal inflows and withdrawals with positive values of the inflow 
(withdrawal) flow rate at the node j  and zero values in the absence of inflow (withdrawal), 
respectively. Then the condition of the nodal balance of quality parameters can be 
presented in a compact form 

Н Н К К
    A Xτ A Xτ Q Τ Q Τ ,                                          (3) 

where X  is a n -dimensional diagonal matrix with elements , 1,ix i n  on the main 
diagonal. 

The task of the analysis is to determine the quality parameters at all points of the multi-
circuit network ( Н К, ,Τ τ τ ) with a known flow distribution ( x ) that satisfies the first 
Kirchhoff's law and given temperatures of external inflows ( Τ ). 

The traditional (topological) algorithm for its solution is associated with a sequential 
traversal of the nodes of the design scheme and is reduced to the following stages: 1) all 
nodes of the scheme are considered unvisited; 2) a node j  with known parameters of 
inflows is selected from among the unvisited nodes, in accordance with (3) the value of the 
nodal parameter for their mixture ( j ) is calculated, and the node itself is considered 
viewed; 3) in accordance with (2), the parameter values j  are equated at the beginning of 
all outgoing branches, and at the end of the branches they are determined based on (1); 5) if 
there are still unreviewed nodes, then on item 2, otherwise – the problem is solved. 

Using (1) for exclusion Кτ  and (2) for exclusion Нτ , we obtain a nodal model of 
quality parameters 

KΤ b ,                                                                   (4) 
where 

Н Н К Н Н
T T T     K A X A A X A Q A X A Q ,                                    (5) 

К ( )  b Q Τ A Xφ х .                                                        (6) 
Having solved the system of linear equations (4) with respect to Τ , one can 

sequentially calculate Нτ , Кτ  from (2) and (1). The main problems of this approach are 
related to the following: 

1) the complexity of solving the system of equations (4) by direct or iterative methods 
nonlinearly (quadratically) increases with an increase in the dimension of the calculation 
schemes. The dimension of the schemes of real heat and water supply systems of heat and 
water supply, etc. can reach many hundreds of thousands of nodes; 

2) in many cases, the calculation of quality parameters is a subtask of other, more 
general tasks, for example, the calculation of non-isothermal flow distribution, regulation of 
the values of quality parameters, etc. In this case, the problem considered here must be 
solved many times; 

4) optimal, one could consider a unified method that is equally applicable both in the 
presence and absence of CCC, and in the latter case, comparable in efficiency with a 
topological algorithm, which does not involve the use of algebraic methods for solving 
systems of equations. 

The analysis of possible approaches that satisfy this requirement is the main subject of 
the issues discussed below. 
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3 Properties of the quality parameter model 
Let us consider some important interpretations and properties of the resulting model (4). 

1. In (5) Н Н
T  R A X A Q  is a diagonal matrix of nodal flows with elements jjR  

equal to the sum of the flow rates of all flows outgoing from the node j , including flows 
along the branches and nodal withdrawals. In accordance with the first Kirchhoff's law, the 
values of these elements are also equal to the sum of all inflows into the node, that is 

T T
Н Н К К

    R A XA Q A XA Q  [7]. 
2. The matrix К Н

TA X A  is responsible for off-diagonal elements Κ . Each element of 
this matrix is equal to: 1) zero if the nodes j  and s  are not connected by any branch; 2) 
flow on a branch, if the node j  is the initial, and the node s  is the final for this branch; 3) 
the total flow along the parallel branches having common end nodes j  and s . 

3. The matrix Κ  is very sparse. The number of its nonzero elements m n , while the 
total number of elements 2m . 

4. If the HC scheme does not contain CCC, the matrix Κ  can be reduced to a triangular 
form [7]. This explains the fact that system (4) can be solved by a topological algorithm. If 
the nodes of the circuit are renumbered so that н кi i  for all 1,...,i n , where are н ,кi i  
the numbers of the initial and final nodes of the branch i , – Κ will be lower triangular. 

5. If the scheme has at least one CCC, the matrix Κ cannot be reduced to a triangular 
form and will have elements both below and above the main diagonal. 

4 Iterative calculation methods 
Iterative methods for solving the system of linear equations (4) have the advantage that they 
use only nonzero elements of the matrix of its coefficients. Whereas direct methods (Gauss, 
Gauss-Jordan, factorization, etc.) lead to a significant filling of this matrix in the process of 
eliminating unknowns or its multiplicative decomposition. With regard to system (4), let us 
consider the two most common, relatively simple, traditional methods of organizing such 
an iterative process [8].  

1. Jacobi method . Since К Н
T K R A X A , then system (4) can be represented as 

К Н
T RΤ A X A Τ b . Hence, the iterative formula has the form 

( 1) 1 ( ) 1
К Н

k T k   Τ R A X A Τ R b .                                                   (7) 
Since the matrix R  is diagonal, the components j  can be calculated one by one and in 
any convenient sequence. This method has relatively slow convergence. A sufficient 
condition for convergence is the strict diagonal dominance of the original matrix K . I.e, 

1
, 1,

m

jj js
s
s j

K K j m



   . In our case, if j  is a node with selection. 

2. Seidel (Gauss - Seidel) method. Let's apply the additive decomposition 
 K L U , where L  is the lower triangular matrix with elements jjR  on the main 

diagonal; L – an upper triangular matrix, with a zero diagonal, containing elements that 
violate triangularity K  in the presence of CCC. Then system (4) can be represented as: 
( ) L U Τ b . Hence, the iterative formula has the form 

( 1) 1 ( )( )k k  Τ L b UΤ .                                                    (8) 
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1

, 1,
m

jj js
s
s j

K K j m



  , which is observed in 

the case under consideration. It has been proven that this method converges faster than the 
Jacobi method [8]. 

The peculiarities of the computational scheme in the presence of the CCC are associated 
with the special properties of the matrix U  containing nonzero components ,j s iU x , 

Ci I , where CI  is the set of chords of the CCC of the computational scheme, and нi s , 
кi j and s j . Therefore: 1) on the right-hand side of (8) only components 

( )k
s нis  , Ci I  are used; 2) the residual vector ( ) ( ) ( )k k kL U b       has nonzero 

components ( ) 0k
j  , for кij  , Ci I . In other cases ( ) 0k

j  .  
Hence, it becomes possible to use a unified computational scheme, applicable regardless 

of the presence (absence) of a CCC, which we will call an iterative topological algorithm: 
1) an initial approximation ( )k

s , нis  , Ci I , : 0k  ; 2) using a topological algorithm 
( 1)k
s
  is determined; 3) if the residuals ( )k

j , кij  , Ci I  are negligible, the problem is 
solved. Otherwise : 1k k  , and on item 2. Obviously in the absence of a CCC, this 
algorithm coincides with the traditional one. 

Let us give numerical examples of the application of the Jacobi method in comparison 
with the above algorithm based on the Seidel method. Figure 1a  shows three test circuits: 
1) with one CCC ( {1}CI  ); 2) in spite of the fact that there are three CСCs, only one chord 
opens them all, therefore {10}CI  ; 3) with two СССs {1, 4}CI  . Figures 1b - 1c 
respectively show the graphs of the solution and residuals by iterations of the Jacobi 
method. It is seen, that the character of the convergence is essentially non-monotonic, 
especially for the trajectories of the residuals. The total number of iterations required to 
comply with the condition ( 1) ( )max | | 0,1k k

j jj
T T   is, respectively, 10, 44, 13. The 

dependence of the number of iterations on the dimension of the scheme and the number of 
CCCs is observed. 

Figures 2a – 2b show the convergence plots of the Seidel method for the same design 
conditions. It is seen that the nature of the convergence is monotonic with respect to the 
change in both the solution and the residuals. Non-zero residuals are observed only at the 
nodes of the approach of the chords of the CCC (these nodes are highlighted in gray in Fig. 
3a). The number of iterations is several times less than that of the Jacobi method (4, 9, and 
6 iterations, respectively). However, here, too, this number depends on the dimension of the 
circuit. 

5 Direct calculation methods 
Direct methods for solving a system of linear equations do not require the organization of 
iterations, the number of which is unknown in advance, and their computational complexity  
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depends only on the dimension of this system. Let us consider the possibilities of obtaining 
effective methods of this group, relying on the considered special properties of system (4). 

a) 

b) 

c) 

Fig. 1. Results of the application of the Jacobi  method. a - graphs of the solution change over 
iterations; b - graphs of residual changes over iterations. 

solution change over iterations; c - graphs of residual changes  
 

a) 

b) 

Fig. 2. Results of the application of the Seidel method. a - graphs of the solution change 
over iterations; b - graphs of residual changes over iterations. 
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Let's represent the model ( ) L U Τ b  as 1 1  Τ L b L UΤ . Here the value  1L b  can 
be defined as 0Τ . We also introduce into consideration the matrix 1V L U , which, 
potentially, can be obtained from the solution of the matrix system of equations LV U . 
Therefore 

1 1 0 0( )        Τ L b L UΤ Τ Τ VΤ E V Τ Τ .                              (9) 
Let's call the parameters s , нis  , Ci I , the total number | |C Cm I  of independent 

ones. The parameters of other Cm m  nodes will be dependent. Let us introduce the 
decomposition of the vectors and matrices of the model (9) according to this feature, using, 
respectively, the designations "I" and "D" 

D

I

 
  
 

Τ
Τ

Τ
, 

0
0 D

0
I

 
  
 

Τ
Τ

Τ
,    D,D

I,D I,I

0 
  
 

L
L

L L
,    D,I0

0 0
 

  
 

U
U . 

To clarify the structure of the matrix V , consider a block-wise representation of the 
system LV U , whence we have the following system of four matrix equations: 

D,D D,D L V 0 , D,D D,I D,IL V U , I,D D,D I,I I,D L V L V 0 , I,D D,I I,I I,I L V L V 0 . It follows 
from the first equation D,D V 0 , since D,D L 0 . From the second we have 

1
D,I D,D D,I

V L U . From the third equation we have I,I I,D L V 0 , whence I,D V 0 . It follows 

from the last equation 1
I,I I,I I,D D,I( ) V L L V . Thus, the matrix V  has a structure 

D,I

I,I

 
  
 

0 V
V

0 V
, where nonzero blocks can be calculated by successively solving two matrix 

systems of equations 
D,D D,I D,IL V U ,    I,I I,I I,D D,I L V L V ,                                   (10) 

where matrixes of coefficients D,DL  and  I,IL  are triangular. 
From the block representation of the original system of equations (9), in which all 

blocks are now defined, two matrix equations follow 
0

D D,I I D Τ V Τ Τ ,                                                        (11) 
0

I I,I I I( ) E V Τ Τ .                                                        (12) 
The solution of system (12) gives the value of the vector  IΤ . Substituting this solution 

into (11), we obtain the value DΤ . 
Let us summarize the results obtained in the form of a finite computational scheme, 

which we call the algebraic-topological method. 
1. Determine 0Τ  from the solution of the triangular system obtained by solving a 

triangular system 0 LΤ b , or by the standard topological algorithm by setting  . 
2. Let us define the matrix I,IV by sequentially solving two matrix "triangular" systems 

of equations (10). 
3. Let us determine *

IΤ  from the solution of system (12) with a square matrix of 
coefficients. 

4. Define * 0 *
D D D,I I Τ Τ V Τ , or, putting  ( ) *

I I
k Τ Τ  and ( )

D
k Τ 0  in (8), we obtain an 

exact solution * ( 1)kΤ Τ by a topological algorithm. 
Thus, this computational scheme involves the solution of systems with triangular 

matrices of coefficients, with the exception of only system (12) of order | |C Cm I . Note 
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that for most schemes of real PLSs Cm m , as well as the fact that in the absence of a 
CCC, this computational scheme is exhausted only by the first stage. 

6 Conclusion 
1. The relevance of the problems of analyzing the properties of flows in pipeline and 
hydraulic systems for various purposes in the presence of ССС. 
2. The properties of the mathematical model and the problem of distribution of flow quality 
parameters, which are important from the point of view of the development of universal 
calculation methods, have been investigated. 
3. The features of the application of general iterative calculation methods have been 
investigated. A computational scheme based on a combination of Seidel's methods and a 
topological algorithm is proposed, which is equally applicable both in the presence and in 
the absence of a CCС.  
4. A new computational scheme, called the "algebraic-topological method", does not 
require iterations. Its effectiveness is determined by the simplicity and speed of the methods 
for solving triangular systems of linear equations and the relatively small number of CССs 
in real PLSs. 

The research was carried out within the project III.17.4.3 of the Fundamental research program of 
SB RAS (AAAA-A17-117030310437-4) 
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