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Abstract. The problem of optimizing the transmission capacity of a 
pipeline network is important for ensuring its operability. The problem arises 
at different stages of the network life cycle (design, optimization, 
development). The problem is to determine the diameters of the pipelines, 
the locations of the pumps and the heads on them, the locations of the 
regulators (flow and pressure) and their parameters. The article proposes a 
new algorithm based on dynamic programming, which implements an 
original approach to organizing a computational procedure. The general 
principles of the algorithm and the content of its steps do not depend on the 
purpose of the network and the composition of its equipment. The algorithm 
is versatile and allows one to optimize networks for various purposes. The 
proposed algorithm is implemented in the IRNET software. On its basis, 
calculations were made for the development of real district heating systems. 
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1 Introduction 
Among the design problems of energy pipeline systems the problem of optimizing the 
transmission capacity of the network is of particular importance. It consists in optimizing the 
diameters of the pipelines, determining the places of installation of pumps and heads on them, 
determining the places of installation of throttling equipment and its parameters. In this paper, 
the subject of research is the problem of ensuring the transmission capacity of tree-like energy 
networks. 

In the 60s of the 20th century soviet scientist V. Khasilev [1] formulated the main 
provisions of the theory of hydraulic circuits [2, 3]. Within the framework of this discipline, 
a unified mathematical matrix language has been developed to describe the topological and 
physical properties of pipeline networks. One of the basic principles of the theory of 
hydraulic circuits is that the methods and algorithms developed within this discipline must 
be versatile and able to be applied to calculate pipeline networks of various types and 
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purposes. The possibility of creating such methods and algorithms is due to the generality of 
the topological properties of pipeline networks and the generality of the network laws of 
conservation of mass and energy. 

At present, approaches based on the use of genetic algorithms [4], simulated annealing 
[5], and mixed integer programming [6-7] are widely used to solve the problem. The 
emergence of dynamic programming [8] has led to significant progress in methods for 
determining the optimal parameters of pipeline networks [9–12]. Among the studies devoted 
to the use of dynamic programming in determining the optimal parameters of heating 
networks, it should be noted [13, 14]. At ESI SB RAS, an iterative method has been 
developed for optimizing the parameters of looped pipeline networks [15, 3], which uses 
dynamic programming to optimize the network transformed into a tree. 

This paper presents an algorithm based on dynamic programming to optimize the 
transmission capacity of pipeline tree-like power networks of various types and purposes. 
The proposed approach to the organization of the computational procedure allows for a new 
structure of the description of mathematical models and algorithms used to solve the 
optimization problem. As a result, there is a separation of these models and algorithms, which 
become universal, and their software implementations can be reused for solving problems of 
pipeline system optimization of various types and purposes. 

2 Statement of the optimization problem  
The problem of optimizing the transmission capacity of the pipeline network is as follows. 
The function of total network costs is minimized, which has the following form: 
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where (2) and (3) – equations of the first and second Kirchhoff laws; (4) – the law of head 
change at branches; (5) – head limitation (upper max

jP  and lower min
jP ); (6) – limitation on 

the flow rate on the branches (upper max
iV and lower min

iV ); (7) – limitation on the maximum 
pump volumetric flow ( P

maxQ  – limitation value); (8) and (9) – discreteness conditions for 
pipeline diameters id  and pump model numbers i ; A  – incidence matrix of size m n ; 

T
1( , , )nd dd   – vector of pipe diameters, T

1( , , )n γ    – vector of pump model 
numbers, T

1( , , )nx xx   and T
1( , , )ny yy   – vectors of volumetric flow rates and head 
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The function of total network costs is minimized, which has the following form: 
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where (2) and (3) – equations of the first and second Kirchhoff laws; (4) – the law of head 
change at branches; (5) – head limitation (upper max

jP  and lower min
jP ); (6) – limitation on 

the flow rate on the branches (upper max
iV and lower min

iV ); (7) – limitation on the maximum 
pump volumetric flow ( P

maxQ  – limitation value); (8) and (9) – discreteness conditions for 
pipeline diameters id  and pump model numbers i ; A  – incidence matrix of size m n ; 

T
1( , , )nd dd   – vector of pipe diameters, T

1( , , )n γ    – vector of pump model 
numbers, T

1( , , )nx xx   and T
1( , , )ny yy   – vectors of volumetric flow rates and head 

drops at branches, T
1( , , )mQ QQ   and T

1( , , )mP PP   – vectors of volumetric flow rates 
and heads at nodes; f  – n- dimensional vector function with elements ( , , )i i i if d x , reflecting 
the laws of head change at branches, 1, ,i n  ; {1, , }I n   – set of branches; 0J   – set of 
simple connection points of branches, J   – set of nodes with outflows; D  and   – sets of 
pipe diameters and pump model numbers. 

The change in the head at the branch i  ( i I ) is described by a function ( , , )i i i if d x , 
the value of which is determined by the formula PL P( , , ) ( , ) ( , ),i i i i i i i i i if d x h d x H x    where 

PL
ih  – total loss of head at the pipeline, P

iH – increase in the head at the pump. 
The total costs for the branch i  ( i I ) are described by a function B ( , , )i i i iC d x , the 

value of which is determined by the formula B PL P( , , ) ( , ) ( , ),i i i i i i i i i iC d x C d x C x    where 
PL
iC  – the cost of the pipeline, P

iC  – the cost of the pump. 

3 Optimization algorithm  
The authors have developed a new algorithm to optimize the transmission capacity of multi-
source tree-like pipeline networks. The main novelties of the proposed algorithm are: 

 universality, which is ensured by the independence of the properties and purpose of the 
network; 
 using a unified method for representing the network model and its elements; 
 a new approach to the organization of the computational procedure; 
 independence from mathematical models of equipment. 
The algorithm consists of the following steps. 
At step 1 of the algorithm, a system of linear equations (2) is solved to determine the 

vector x  of volumetric flow rates on the branches. After that, the orientation of the branches 
is changed so that it corresponds to the direction from the root of the tree to its end nodes. 
When the orientation changes, the branches change to opposite signs of the corresponding 
vector x  components. 

At step 2 of the algorithm, data structures are formed for storing the components of 
conditionally-optimal solutions to the problem, which will be determined during the 
computational process of dynamic programming. Based on the calculated constraints on the 
heads, cells are constructed for storing the parameters of the network elements when 
constructing conditionally-optimal solutions to the problem. 

At step 3 of the algorithm, conditionally-optimal solutions to the problem are constructed, 
each of which includes the parameters of the branches and nodes of the network. A construct 
operation is a bottom-up dynamic programming approach [16]. The algorithm implements 
the process of constructing conditionally-optimal solutions to the problem and is developed 
on the basis of the Depth-first search (DFS) algorithm [16]. In the algorithm, the reverse 
motion of the DFS is used to organize the process of constructing conditionally-optimal 
solutions from the end nodes to the root of the network tree. The construction of solution 
components for a branch is performed during the return movement of the DFS algorithm 
along the branch. When the algorithm returns to a node, conditionally-optimal solutions are 
joined and solution components are determined at this node. 

The operation of determining the components of conditionally-optimal solutions at a cell 
for a branch is performed based on the Bellman's principle of optimality [8]. At branch i  (
i I ), that has initial j  and final q  nodes, the following subproblem is solved for a cell k  
( 1, ,k   ): 
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where ix  – flow rate, ikd  и ik  – components of the conditionally-optimal solution at cell  
k , w  – cell number at node q , qwC  – costs at cell w , qwH  – head at cell w  at node q , 

ikH  – head at the branch start at cell k , ikC  – costs at cell k  on the conditionally-optimal 
solution from the branch i  to the end nodes.  

Determination of the components of conditionally-optimal solutions for a node is 
performed by combining conditionally-optimal solutions in this node. Let jI   be the set of 
branches, having node j  as the initial. The head jkH  and the sum of costs jkC  for a 
conditionally-optimal solution from the node j  to the end nodes of the network are 
calculated when the solutions are joined at the cell k  ( 1, ,k   ). jkH  is determined by 
the formula 
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After completing step 3 of the algorithm, the components of conditionally-optimal 

solutions for all network elements are found. As a result,   conditionally-optimal solutions 
to the problem have been constructed. Each of them (Fig. 1) corresponds to the head change 
curve from the root of the tree to the end nodes of the network. The component values for 
each of these conditionally-optimal solutions are stored in two-dimensional arrays. 

At step 4 of the algorithm, the best of the found conditionally-optimal solutions to the 
problem is determined. The number of the best conditionally-optimal solution corresponding 
to the solution with the minimum total costs to the system is determined by the formula: 
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Fig. 1. Conditionally-optimal solutions to the problem. 

At step 5 of the algorithm, vectors of the required parameters d , γ , and x  are formed, 
and their components are assigned values corresponding to the found optimal solution. Then 
the original orientation of the branches is restored. 

4 Conclusions 
The problem of optimizing the transmission capacity of the pipeline network is of great 
importance and is solved at different stages of the network life cycle (design, optimization, 
development). The paper proposes a new algorithm based on dynamic programming, which 
implements a new approach to organizing a computational procedure. The general principles 
of the algorithm and the content of its steps do not depend on the purpose of the network and 
the composition of its equipment. The algorithm is versatile and allows optimization of 
networks for various purposes. The proposed algorithm is implemented in the IRNET 
software. On the basis of IRNET, calculations were made for the development of a real heat 
supply system in Saint-Petersburg [17], Bratsk [18], and the urban-type settlement 
Magistralny [19-20]. The resulting solution contains optimal parameters for new network 
elements and provides the required transmission capacity of the existing part of the network. 

 
The research was carried out under State Assignment, Project 17.4.1 (reg. no. AAAA-A17-
117030310432-9) and Project 17.4.3 (reg. no. AAAA-A17-117030310437-4) of the Fundamental 
Research of Siberian Branch of the Russian Academy of Sciences 
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