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Abstract. The effectiveness of solving the problems of development, 
reconstruction and control of pipeline systems is directly related to the 
level of application of methods for mathematical modeling and computer 
technology, which cannot be provided in isolation from the problems of 
reliability of information about their actual characteristics and parameters, 
as well as the degree of adequacy of used models. These problems 
constitute the content of identification tasks. The trend of transition to 
intelligent pipeline systems requires consideration of their control 
processes in real time, and hence the consideration of identification 
problems as passive identification problems based on the results of 
dynamic measurement data. The article provides an analysis of the existing 
experience in the field of dynamic states modeling of pipeline systems of 
various types and purposes, as well as mathematical formulations of the 
identification problem depending on the degree of parametric and state 
nonstationarity of systems, on the method and rate of data acquisition. 

1 Introduction  
A large number of works both in Russia [1-6] and abroad [7-9] are devoted to the 
identification of pipeline systems (PLSs) of various types and purposes, which indicates 
their relevance, complexity and multidimensionality.  

Recently, in connection with new trends in the transition to intelligent PLS, it is 
necessary to consider the processes of their control in real time. This, in turn, requires the 
consideration of the identification problems as passive identification problems based on the 
results of dynamic (obtained during the operation of the system and changing in time) 
measurement data. 

The subject of the article is the analysis of the existing experience in the field of 
modeling the dynamic states of PLSs of various types and purposes for the possibility of its 
subsequent use in solving identification problems.  
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2 The problem of dynamic identification of PLS 
As mentioned above, the purpose of identification is to obtain the parameters and 
characteristics of PLS with the required accuracy (ensuring the required adequacy of the 
used mathematical models), which undergo significant changes during operation, and the 
coefficients of these characteristics are not available for direct measurement or observation. 
In the previously developed identification methods [10], it was assumed that the 
coefficients of characteristics were set expertly with some initial approximation. When 
proceeding to the consideration of dynamic identification, it is necessary to take into 
account the change in these characteristics, as well as operation states of PLSs over time. In 
this case, the following tasks arise: 1) estimation of the state according to the measurement 
results; 2) parametric identification; 3) forecasting.   

Technological transformation and modernization of PLSs due to the intensive 
introduction of new equipment, including measuring instruments, systems for acquisition 
and processing of measurement data, makes it possible to obtain a selection based on 
measurement data over time for various states of their operation. Nevertheless, the existing 
level of equipping with measuring instruments, which, as a rule, are installed at the main 
object (Heat Sources, Pumping Station, etc.) for technological and commercial accounting, 
is not always sufficient to solve identification problems. However, this ensures the 
availability of a basic composition of measurements, changing, which, it can provide the 
required quality of identification. These circumstances, in turn, make relevant a special 
class of problems and methods of current (operational) identification, involving the 
refinement of previously obtained results on the basis data received without using 
retrospective measurement information. In this case, instead of the task of synthesis of 
information-measuring systems, the task of their development arises, providing the 
necessary conditions for the formulation and solution of dynamic identification problems, 
as well as the development and application of new methods that provide the ability to 
process large volume of measured information at the rate of its arrival. The methodological 
basis for solving the problems of development of information-measuring systems can be 
developed earlier in the framework of the active identification methodology [11], the 
method of optimization of the measurements composition [12]. 

The transition to dynamic identification methods will make it possible to lower the 
requirements for the composition and number of measuring instruments due to an increase 
in the degree of overdetermination of the problem due to additional information obtained in 
the form of dynamic equations.  

3 Modeling of PLS operating states 
Consideration of PLS control processes in real time is reduced to the consideration of two 
types of states of their functioning: 1) steady-state (stationary); 2) dynamic (non-
stationary). 

Stationary states of PLSs operation are characterized by a change in parameters only in 
spatial coordinates, for example, along the length of pipelines. Therefore, when modeling 
them, all parameters are considered as constant values for a specific period of time. In real 
conditions, such states are short-term, and their models can be effectively used only when 
solving design and reconstruction problems, as well as when planning the conditions for 
conducting special tests (active identification). However, when solving control problems, 
instead of stationary states, it is necessary to consider dynamic (time-varying) states, which 
are basic in the operation of PLSs. 

A feature of non-stationary states is the change in parameters not only in spatial 
coordinates, but also in time. Depending on the inertial properties of a specific PLS and the 
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nature of the disturbing influences, non-stationary states can arise with natural non-
stationarity of consumption processes (quasi-stationary states [13-15]) and with violations 
of the normal state of PLSs operation due to emergencies accompanied by the occurrence 
of unacceptable pressures under the conditions of equipment strength (transient states – 
water hammer [16-22]). The latter, as well as stationary states, are short-term processes and 
are not typical for the functioning of PLS. Most of the time, these systems operate in states 
smoothly varying in time (quasi-stationary regimes), which are monotonic and caused by 
long-term disturbances. 

When solving any problem in the process of PLS controlling, it is necessary to give 
their mathematical description. Depending on the type of the system operation state under 
consideration, this can be done using either algebraic (stationary states) or differential (non-
stationary states) equations. 

Stationary state models. When modeling the steady-state (stationary) states of PLSs 
operation, there are models of hydraulic [23-26], temperature [27] and thermohydraulic 
states of PLSs [10]. 

The model of the thermohydraulic state [10] (1)-(3) includes the equation of the first 
(material balance at the nodes) (1) and the second (2) Kirchhoff laws, as well as equation 
(3), which reflects the laws of pressure drop along the branches. The temperature state 
model (4)-(5) includes the heat balance equation at the nodes (4), the condition for the 
complete mixing of flows (5) in the nodes and the equation (6), which reflects the laws of 
temperature drop with the flow of the medium along the branches. 

Non-stationary state models. This class of models has long been used to solve problems 
of analysis and simulation. Traditionally, the system of partial differential equations in [16] 
is used to model unsteady fluid flow states. The first equation of the system is a 
modification of the motion equation, the second is a modified continuity equation of the 
flow. 

The model presented in [16] describes the phenomenon of water hammer, which, as 
mentioned above, occurs when the normal state of PLS operation is disturbed, has a short-
term character and is not usual for  functioning states of PLSs. The use of this model for 
describing non-stationary states of real dimensionality pipelines increases the complexity 
and laboriousness of calculations. Therefore, it is not advisable to use this model to 
describe smoothly varying in time (quasi-stationary) states. The transition to the 
consideration of models of quasi-stationary states of PLSs is due to the need to take into 
account the following factors of nonstationarity: 

1. The presence of accumulating tanks, for example, in water supply systems: pressure 
tanks, counter tanks, reservoirs at the inlet of pumping stations to smooth out their 
operating states; in heat supply systems: accumulating tanks of heated water to provide hot 
water for consumers during maximum load hours, etc. The authors in [28] propose a system 
of equations in differential form for modelling the reservoir level in a non-stationary state 
of water supply system.  

2. Transport lag of quality parameters of the supplied medium (temperature, physical 
and chemical properties, etc.), which propagate with the speed of the medium. In [29], an 
equation for the temperature dynamics is proposed in terms of the average temperature lag 
coefficient. 

In many works [13-15], when modeling non-stationary operation states of PLSs, the 
authors attempt to reduce these states to a set of continuously following one after another 
stationary states in which the parameters characterizing the system aren’t changed during 
the observation time.    
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4 Statement of the dynamic identification problem 
Reviewed the issues of PLSs modeling, it gives to proceed to the mathematical formulation 
of the identification problem depending on the degree of parametric and state 
nonstationarity, as well as on the method and rate of data acquisition [4-5]: 

1. Retrospective identification consists in determining of estimates for the vector of 
elements parameters (α ) by the results of measuring of parameters N steady states: 

( )
1 , 1,u u NR , at that, const   for the period of measurements. Under these conditions, 

the sequence of states in time does not matter. The processing of measurement results can 
be carried out autonomously within the framework of the basic mathematical formulation 
with criterion (1) under constraints in the form of flow distribution U( ) U( ) 1 2Z Z , Z 0 , 
where (1) (2) ( )U( ) {U( , ), U( , ),..., U( , )}NZ R α R α R α  и (1) (2) ( ){ , , , , }NZ R R R α .  

1 11 1
1 1 1 Z1 1 1 1 Z1 12 2( ) ( ) ( ) ( ) ( )T T     Z Z Z C Z Z e Z C e Z  ,                         (1) 

where 1Z  – vector of measurements for model parameters; 
1ZC  – covariance matrix of 

measurement error 
1 1 1 Zξ Z Z

  is assumed to be given; ,1 1Z Z
  – vectors of measured and 

true values 1Z .  
The presence of permanently operating systems for acquisition of measurement 

information imposes special requirements on identification methods and algorithms, since 
calculations must be synchronized with the rate of receipt of measurements, and storage 
and simultaneous processing of data with N    becomes impossible, whatever the 
resources of the used computer technology. These circumstances, in turn, make relevant a 
special class of problems and methods of current (operational) identification, involving the 
refinement of previously obtained results on the basis of newly received data without using 
retrospective measurement information. Despite the fact that the application of this scheme 
is supposed to be carried out in real time, it can be implemented on the basis of steady-state 
flow distribution models – by excluding from processing measurements corresponding to 
transient processes caused by discrete disturbances. 

2. Identification of dynamic characteristics. In many cases, the condition constα  
cannot be taken as a basis. With the current identification carried out on an unlimited time 
interval, tracking changes in actual values can be one of their main goals. At the same time, 
considering α  as some unknown function of time means that each new state of PLS, for 
which measurements 1( )tR  are used , introduces additional unknowns ( )tα  and does not 
override the task. This is solution nevertheless turns out to be possible on the basis of 
additional a priori information on the behavior   in time. In this case, the following 
situations are possible: 

a)  the law of change α  is specified as an explicit deterministic function of time with a 
finite number of parameters  

( ) φ ( , ), 1, ,i i it t i n           (2) 

where i  – dynamic characteristic of branche i of network schema; i  – the vector of its 
parameters, which are no longer dependent on time. Substitution (2) into the initial 
equations of the flow distribution model U[ ( ), ( )]t t R α 0  leads (replaced   by  ) to the 
already considered current identification problem. The presence of the species ( , )i i t   
makes it possible to predict α  at an arbitrary point in time. The covariance matrix of 
prediction errors has the form ˆ( / ) ( / )T

     C C , where ˆ
C  – estimates 
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covariance matrix ̂ ; /   – partial differential matrix of a vector-function φ( , )tβ  в 

точке ̂ , t . 

b)  function (2) is unknown, but the nature of the behavior α  in time is known. As a 
rule, one can rely on the assumption of a directed and monotonic change ( )tα . Expanding 
an unknown function ( )i t  in the surrounding area 0t  in the Taylor series, limited, for 
example, by members of the second order 

1 2 2 2
0 0 2( ) ( ) ( / ) ( / )i i i it t t t t t t              , where 0t ,t t    and designating: 

1 2 2
0 0 1 2 2( ), ( / ), ( / ),i i i i i it t t             we have ,( ) ( , ) ( ),i i i it t t       где 

2
0 1 2( , ) ( )i i i i it t t        , , ( )i t  – approximation error. If we neglect the value 

, ( )i t , then the problem is reduced to the previous case. 

c)  law of change α  is given in the form of a stochastic function, which in general for 
the network can be represented in the form 

( ) φ( , ) ( )t t t α β ξ . (3) 

In most cases, the vector ( )tξ  (composed of values , ( ), 1,i t i n  ) can be interpreted 
as noise with zero mean and unknown, but constant in time, covariance matrix C . Thus, 
when processing data for state N, received at the time t, there are errors of three types: 

1( )R tξ  – error of measurements, ( )tξ  – error of model (3), ( )tξ  – error of identification 
β  in the previous stages. Forming the joint density of their distribution, and passing to the 
loss function, we obtain the minimum problem 

1 1 1 1
1 1 12Ф[ ( ), ( ), ] ( )T T T

R R Rt t   
       R α β e C e e C e e C e  with restrictions U[ ( ), ( )] 0t t R α , 

where 1 1 1[ ( )] ( ) ( )R Rt t t  e e R R I R ; [ ( ), ] ( ) φ( , )t t t   e e α β α β ; ( )    e e β β ; 

( )tα  – predicted value ( )tα ; C  – posterior value C , after processing of the state (N-1). 
The method of sequential estimation is also applicable in this case, assuming only the 
expansion of the composition of unknowns, and the covariance matrix of forecast errors 

( )tα  here has the form ˆ( / ) ( / )t
       C C C . 

d)  dependence ( )tα  is random. Assuming that fluctuations ( )tα  do not exceed on 
average the value itself ( )tα , it can set the problem of estimating the mathematical 
expectation ( )tα , which denote as [ (t)]β E α . In this case, we have the following model 

( ) ( )t t α β ξ . Obviously, this situation is a limiting case (2). 
For this case, the sequential estimation technique is also applicable, which assumes only 

the expansion of the composition of unknowns. 
3. Adaptive identification. If the rate of arrival of measurements is high, it is possible to 

carry out the estimation without invoking dynamic characteristics, assuming that in the 
vicinity of the current moment of time the changes in the vector are insignificant (at least 
against the background of measurement noise), and this neighborhood itself is large to 
accumulate information about the parameters, which allow estimate with sufficient 
accuracy. The traditional approach to the construction of adaptive identification algorithms 
is to take into account the aging of the measurement information obtained outside the 
regularity interval. The corresponding modification of the objective function 

5

E3S Web of Conferences 219, 03001 (2020)	 https://doi.org/10.1051/e3sconf/202021903001
Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic 
Systems 2020



1(1) ( ) ( ) ( ) 1 ( ) 1
1 ,02

1
Ф( ,..., , ) [ ( ) ( ) ( ) ( )]

N
N u t u u T

R
u

 




 R R α d e R C e R e α C e α , where ( )ud  – scalar 

function of  reliability of measurement u.  
 There are two most common variants of the specification for the reliability function 

( )ud : 1) sliding window method; 2) exponential weighting (smoothing) method. 
4. Identification of dynamic states. The involvement (where it is really necessary) of the 

equations of unsteady flow distribution in the role of state models, although it leads to the 
complication of identification procedures, provides significant advantages, the main one of 
which is that the dimension of the vector of the estimated parameters does not increase with 
an increase in the number of measurements, due to the addition equations of dynamics.  

Thus, discrete analogues of the equations of unsteady flow distribution, at least 
numerically, can be represented in the form of two main subsystems of equations: 1) 
dynamics model ( ) ( ) ( 1)

R R( , )u u u X X α ; 2) measurements model: 
( ) ( ) ( ) ( )
1 1ψ ( , )u u u u

R Z Z X α ξ , where index u  refers to a discrete moment in time ( )ut . The 
dynamics model allows the state ( )u

RX  at any time ( )ut  represent as a function of the initial 

state (0)
RX : ( ) ( ) (0)

R R( , ), 1, .u u u N  X X α  By designating (0)[( ) , ]t t t
Rγ X α , get 

( ) ( ) ( )
1 1ψ ( ) , 1,u u u

Z u N   Z ξ . 
Thus, the problem of parametric identification in the case under consideration can be 

reduced to solving the problem for an unconditional minimum 
1 ( ) ( ) 1 ( ) ( )

1 1 12
1

Ф( ) [ ψ ( )] [ ( )].
N

u u T u u
Z

u





      Z C Z ψ    

Although with growth N the dimension of the equations system does not increase, the 
complexity of the problem significantly increases, since at each iteration it is necessary to 
calculate the entire trajectory of the dynamics  of states ( ){ , 1, }u

kR u N , and also matrices 
of derivatives. Therefore, perhaps the only possible approach to identifying of PLS as 
dynamic objects in real time is to use various methods of decomposition problem. One of 
such methods is the transition from the problem of estimating the initial state to the problem 
of estimating the current state, without recalculating the dynamics of the process at the 
previous moments of time. This technique, which can be interpreted as applying the idea of 
sequential estimation to the estimation of parameters of dynamic models, is also known as 
the Kalman filter. 

5 Conclusion 
Within the framework of this work, a study of the problem of modeling of PLSs operation 
states was carried out. The analysis of the models existing in the modern researches for the 
description of dynamic states is carried out. 

The structuring is given and the content of the main identification tasks is disclosed 
depending on the degree of parametric and state nonstationarity of PLSs, as well as on the 
method and rate of data acquisition. 

In general, the results of this study create the basis for dynamic identification problems 
for various purposes, conditions and types of PLSs.  

The research was carried out within the project III.17.4.3 of the Fundamental research program of 
SB RAS (AAAA-A17-117030310437-4) 
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complication of identification procedures, provides significant advantages, the main one of 
which is that the dimension of the vector of the estimated parameters does not increase with 
an increase in the number of measurements, due to the addition equations of dynamics.  

Thus, discrete analogues of the equations of unsteady flow distribution, at least 
numerically, can be represented in the form of two main subsystems of equations: 1) 
dynamics model ( ) ( ) ( 1)

R R( , )u u u X X α ; 2) measurements model: 
( ) ( ) ( ) ( )
1 1ψ ( , )u u u u

R Z Z X α ξ , where index u  refers to a discrete moment in time ( )ut . The 
dynamics model allows the state ( )u

RX  at any time ( )ut  represent as a function of the initial 

state (0)
RX : ( ) ( ) (0)

R R( , ), 1, .u u u N  X X α  By designating (0)[( ) , ]t t t
Rγ X α , get 

( ) ( ) ( )
1 1ψ ( ) , 1,u u u

Z u N   Z ξ . 
Thus, the problem of parametric identification in the case under consideration can be 

reduced to solving the problem for an unconditional minimum 
1 ( ) ( ) 1 ( ) ( )

1 1 12
1

Ф( ) [ ψ ( )] [ ( )].
N

u u T u u
Z

u





      Z C Z ψ    

Although with growth N the dimension of the equations system does not increase, the 
complexity of the problem significantly increases, since at each iteration it is necessary to 
calculate the entire trajectory of the dynamics  of states ( ){ , 1, }u

kR u N , and also matrices 
of derivatives. Therefore, perhaps the only possible approach to identifying of PLS as 
dynamic objects in real time is to use various methods of decomposition problem. One of 
such methods is the transition from the problem of estimating the initial state to the problem 
of estimating the current state, without recalculating the dynamics of the process at the 
previous moments of time. This technique, which can be interpreted as applying the idea of 
sequential estimation to the estimation of parameters of dynamic models, is also known as 
the Kalman filter. 

5 Conclusion 
Within the framework of this work, a study of the problem of modeling of PLSs operation 
states was carried out. The analysis of the models existing in the modern researches for the 
description of dynamic states is carried out. 

The structuring is given and the content of the main identification tasks is disclosed 
depending on the degree of parametric and state nonstationarity of PLSs, as well as on the 
method and rate of data acquisition. 

In general, the results of this study create the basis for dynamic identification problems 
for various purposes, conditions and types of PLSs.  

The research was carried out within the project III.17.4.3 of the Fundamental research program of 
SB RAS (AAAA-A17-117030310437-4) 
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