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Abstract. The article shows that the problem of dimension is a significant 
obstacle to the automation of solving the problem of finding optimal 
hydraulic modes of heat supply systems. To overcome this problem, the 
authors have previously proposed a hierarchical approach to optimizing the 
hydraulic modes of heat supply systems. The article discusses the problem 
of aggregating distribution heating networks within the framework of this 
approach. To solve it, the previously proposed by the authors of loop 
reducing dynamic programming method is adapted. Its operability and 
computational efficiency are checked on computational experiments. 

1 Introduction 
Energy efficiency problems are topical both in Russia and abroad, while heat supply 
systems (HSS) have significant reserves of energy saving [1], which can be released by 
organizing optimal modes of their operation. In practice, the task of planning HSS modes is 
solved by multivariate calculations of the mode [2]. The choice of methods for organizing 
the modes is assigned to the specialist performing the calculations, which does not 
guarantee the optimality of the solutions obtained. The automation of solving these 
problems is complicated by a number of factors: the high dimensionality of the HSS [3], 
[4], the nonlinearity of the involved flow distribution models, the presence of several 
objective functions, etc. For these reasons, there are no methods and software systems 
suitable for wide practical application. This determines the relevance of the development of 
methods for calculating the optimal HSS modes. 

One of the main problems arising in the optimization of HSS modes in large cities is 
associated with their large dimension, calculated in many hundreds of thousands of nodes 
of the design scheme. In a number of works, for example, [5], this problem is not solved, 
limiting itself to considering only low-dimensional HSS. In some works ([6, 7] and others), 
an approximation of the dependence of the value of the objective function on the 
parameters of the mode selected as a basis is used, which significantly complicates the 
correct accounting of discrete variables associated with the composition of the equipment. 
In other cases, to overcome the dimensionality problem, aggregation of HSS schemes is 
used, which prevents taking into account the entire set of constraints and does not guarantee 
the required accuracy of solutions. A common approach is using ready-made solvers. The 
main disadvantage of this approach is the impossibility of adapting methods to specific 
problems, and, as a consequence, too high computational costs. So, for example, in [8, 9] 
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the physical model of the network is built in the Simulink / Matlab environment, for 
calculating the state of which the CPLEX solver is used, and for optimization - the 
ReMIND software. The use of genetic and evolutionary algorithms requires even greater 
computational costs. For example, in [7], a nested iterative cycle is used to minimize the 
cost of pumping the coolant. In the inner loop, the allowed mode is calculated using the 
SIMPLE algorithm. On the outer loop, the parameters determining the mode are changed 
using a genetic algorithm.  

Mainly, problems related to operational management are considered, for example, [10 - 
12]. Thus, at present, there is no satisfactory solution to the problems of planning HSS 
modes of real dimensions, which arises at the stage of preparation for the heating season. 

The subject of this article is the tasks and methods of optimizing the operating modes of 
the HSS. The object of application is distribution heating networks (branched HSS 
fragments to end users) as part of hydraulically connected HSS in the process of optimizing 
HSS modes. It is assumed that the temperature conditions at heat sources (HS) are set, the 
heat losses in the networks are eliminated, and their residual value can be neglected. In this 
case, the requirements for providing consumers with thermal energy is reduced to the need 
to maintain their required coolant flow rates, and the task is reduced to the optimization of 
the hydraulic mode (HM). 

2 Statement of the problem 
Meaningfully, to optimize the HM of the HSS, it is necessary to find control actions that 
implement the mode that meets the admissibility requirements and achieves the specified 
optimization goals. 

Earlier [13], the authors proposed a hierarchical approach to optimizing HSS modes to 
solve the dimension problem. This approach includes the following stages: 1) 
decomposition of HSS into backbone (BHN) and distribution (DHN) heating networks; 2) 
search for the limits of permissible change in the mode parameters at the decomposition 
point; 3) optimization of the BHN mode, taking into account the constraints obtained in the 
previous step; 4) optimization of DHN modes taking into account the parameters of the 
BHN mode at the decomposition point. BHN contains all heat sources, pumping stations 
and a single-line multi-loop part of the network. DHN includes only branched passive 
networks to end users. The decomposition point is the point of joining the DHN to the BHN 
in a single-line representation and two nodes in the bilinear representation, one of which 
(point a) is the junction of the supply pipelines BHN and DHN, the second (point b) - the 
return ones (Fig. 1). For BHN, the decomposition point is a generalized consumer with 
bilateral restrictions on pressures in the supply and return pipelines, as well as on the 
difference in these pressures. For DHN, the decomposition point is a generalized HS 
modeled by two dangling nodes. 

 
Fig. 1. Illustration of the principles of decomposition. a) HSS diagram in single line representation; b) 
BHN; c) DHN; d) nodes of the division of hierarchical levels on a two-line diagram; e) the result of 
decomposition on a two-line diagram. 1 - HS; 2 - pumping station; 3 - nodes of decomposition; 4 - 
consumers; 5 - generalized consumers; 6 - generalized HS; 7 - a branch replacing the DHN. 

Thus, when aggregating the DHN (replacing the DHN with a generalized consumer), it 
is necessary, based on the information about the DHN, to determine the minimum and 
maximum pressures at points a and b, as well as the minimum and maximum difference 
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Thus, when aggregating the DHN (replacing the DHN with a generalized consumer), it 
is necessary, based on the information about the DHN, to determine the minimum and 
maximum pressures at points a and b, as well as the minimum and maximum difference 

between these pressures at which at least one DHN hydraulic mode that satisfies the 
admissibility requirements. 

2.1 Model of controlled flow distribution.  
For DHN, due to the branched configuration, there is a fixed, easily computable flow 
distribution. Accordingly, the model of controlled flow distribution [14] will take the form: 

   0
( , )

TA 
  

 

P y
U X

y h x z
,                                          (1) 

where: A - is the matrix of incidents of the DHN design diagram; P - m-dimensional 
pressure vectors; x, y - n-dimensional vectors of flow rates and pressure drops on the 
branches; h(x,z) - n-dimensional vector function with elements hi(xi,zi), i I , 
approximating the dependence of the pressure drop on the flow rate on the branches; z is 
the vector of relative hydraulic resistances (for example, increased by throttling); X=(P, x, 
y, z). As an approximation of the hydraulic characteristics of the i-th branch, we can take 
[15]: 

( , )i i i i i i ih x z z s x x .       (2) 
Here: si - hydraulic resistance. In (2), to simulate a control action mode that is absent or 
forbidden for change at the planning stage, the corresponding variable can be equated to a 
constant. 

If any mode parameter depends on the external environment, the corresponding variable 
is fixed. Let us call these parameters boundary conditions. For HSS, such parameters are 
the pressure in the make-up nodes (the nodes in which the coolant is supplied to the HSS to 
compensate for coolant losses and withdrawals) and the flow rates in all other nodes. 

Let us write down the requirements for the admissibility and feasibility of the mode as 
[14] j j jP P P  , i i iy y y  , i i iz z z  , i i ix   , i I , j J ,  where ,j jP P , 

,i i  , ,i iy y  and ,i iz z  are the permissible limits of variation of Pj, хi, iy  and zi. Let us 
introduce a vector of Boolean variables δ, the components of which δi are responsible for 
the presence or absence of throttling on the i-th branch of the design diagram. We also 
replace the inequality i i iz z z   with  i i i i i iz z z z z     . Then the system of 
restrictions takes the form: 

 , , , , , .j j j i i i i i i i i i i i iP P P y y y z z z z z x i I j J               (3) 
When solving the problem of DHN aggregation within the framework of the hierarchical 
approach, the following are considered known for each DHN: topology of the calculation 
scheme; border conditions; coefficients of hydraulic characteristics (si, i I ); permissible 
limits of variation of continuous variables. You need to find the following quantities: 

min aP  under constraints (1) and (3);   (4) 
max aP  under constraints (1) and (3);   (5) 
min bP  under constraints (1) and (3);   (6) 
max bP  under constraints (1) and (3);   (7) 

 min a bP P  under constraints (1) and (3);   (8) 

 max a bP P  under constraints (1) and (3).   (9) 
Here a is the junction of the supply pipelines BHN and DHN, and b is the return ones. 

3 Problem solving method 
3.1 Loop reducing dynamic programming method 
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Earlier [15], the authors proposed a loop reducing dynamic programming method (LRDP) 
to solve the problem of optimizing the DHN HM. The advantages of this method include: 
guaranteed finding the optimal HM; better performance in comparison with alternative 
methods (for example, based on the method of interior points [16]); growth of 
computational costs linear in the dimension of the problem; the possibility of solving the 
problem of multiobjective optimization in one application of the method. 

The main idea of LRDP is to consider the whole DHN. To facilitate tracking the second 
Kirchhoff's law compliance along the contours during the forward stroke, the contours are 
reduced to the state of two branches connected in parallel during the reduction of the entire 
design diagram to one branch with cutting off both unacceptable and non-optimal pressure 
distribution options. Instead of the recurrence relations typical of the dynamic programming 
method used for branched pipeline systems [17, 18], to preserve the possibility to apply the 
principles of dynamic programming on "reduced" loops, special techniques are used for 
equivalent sequential and parallel connection of branches, aggregating pressure drop 
trajectories. On the return stroke, the only remaining pressure distribution option is restored 
to the entire network. 

The intervals of the allowable change in the pressure are divided into equal non-
intersecting subintervals (pockets). Let's renumber the pockets so that their numbers 
represent discrete pressure readings at the nodes with some factor. For the sake of 
definiteness, assume that all branches are directed downstream. Let's designate the initial 
node of the i-th branch as if J ,  the final one – as il J . To each branch we associate 

the set of possible trajectories of pressure drop on it:  k
i iL g  , where k is the trajectory 

index. Here, the pressure drop trajectory ( k
ig , hereinafter simply “segment”) is understood 

as the pressure distribution along the branch. Each segment ( k
ig ) is codirectional with the 

branch to which it belongs, and starts in some pocket of the initial node of the branch 
(initial pocket, k

i ) and ends in some pocket of the final node (final pocket, k
i ). Such a 

representation of the segments allows, based on the known pressure distribution in the 
DHN, to completely restore the DHN HM together with the values of the variables 
corresponding to the control actions that ensure its implementation. Let's compare the 
increment of the objective function value k

iF  to each segment k
ig . This representation of 

the DHN branches allows us to consider a fragment consisting of several sequentially 
connected branches as one branch. You can also consider as a branch a fragment of an 
DHN, consisting of several parallel-connected branches. 

The direct stroke of the LRDP consists in contracting the trajectories of the pressure 
drop with rejection of unacceptable and non-optimal variants on the design diagram of the 
DHN due to the equivalenting techniques, as a result of which there will be only one branch 
with the optimal pressure distribution. 

To equate parallel branches, do the following. If on two branches connected in parallel 
(i1, i2), there are a pair of segments (one per branch), which coincide with the initial and 
final pockets, respectively ( 1 2

1 2
k k
i i   and 1 2

1 2
k k
i i  ), then such a pair becomes a segment 

on the equivalent branch, starting and ending in the corresponding pockets. The value of the 
objective function increment for it is equal to the sum of the objective function increments 
of both equivalent segments. All segments that are not included in any such pair are 
discarded.  

When equating a fragment of an DHN, consisting of two branches (i1, i2) connected in 
series (for definiteness, fi2 = li1), with one branch, the following is done. There are all such 
pairs of segments on these branches ( 1 2

1 2,k k
i ig g ) that at the node fi2 these segments have a 

common pocket ( 1 2
1 2
k k
i i  ). If two pairs of segments are found connecting the same 
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(i1, i2), there are a pair of segments (one per branch), which coincide with the initial and 
final pockets, respectively ( 1 2
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k k
i i   and 1 2

1 2
k k
i i  ), then such a pair becomes a segment 

on the equivalent branch, starting and ending in the corresponding pockets. The value of the 
objective function increment for it is equal to the sum of the objective function increments 
of both equivalent segments. All segments that are not included in any such pair are 
discarded.  

When equating a fragment of an DHN, consisting of two branches (i1, i2) connected in 
series (for definiteness, fi2 = li1), with one branch, the following is done. There are all such 
pairs of segments on these branches ( 1 2

1 2,k k
i ig g ) that at the node fi2 these segments have a 

common pocket ( 1 2
1 2
k k
i i  ). If two pairs of segments are found connecting the same 

pockets, the pair with the worst value of the objective function increment is discarded. If 
after rejection there are several pairs left, any of them is selected. Each of the found pairs of 
segments on the equivalent DHN fragment turns into a segment on the equivalent branch 
with the corresponding initial and final pockets. The value of the objective function 
increment for it is equal to the sum of the objective function increments of the segments of 
the equivalent pair.  

The reverse stroke consists in restoring the optimal trajectory of the pressure drop 
(vector P) along all the elements of the original design diagram of the DHN. According to 
the known vector P, as mentioned above, it is possible to restore the remaining parameters 
of the optimal DHN HM. To restore the optimal trajectory of pressure drop, it is necessary 
to remember for each equivalent branch which fragment it is equivalent to, and for each 
equivalent segment - which segments it equivalent. Knowing this information, the segment 
remaining after the DHN design diagram reduction into one branch can easily be expanded 
to the entire DHN design diagram. 

3.2 Search for the limits of changing the mode parameters at the 
decomposition points  
At given pressures at points a and b, it is possible to search for an acceptable mode using 
LRDP, taking 0, ,k

iF k i I     . In this case, when equivalenting branches connected in 
series, instead of choosing the best pair of segments for two pockets, one can choose any 
pair for these pockets that satisfies the condition 1 2

1 2
k k
i i  . This reduces computational 

costs. 
When searching for the optimal or permissible HM of the DHN, at points a and b, the 

pressures caused by the HM of the BHN are set. When searching for the limits of the 
permissible change in the parameters of the mode at the decomposition point (points a and 
b), at these points the pressure change intervals are set due to technological limitations. 

To solve the problem of DHN aggregation, it is proposed to apply the following 
computational scheme of the LRDP. 

1. For all branches of the DHN, all allowed (within the constraints on the admissibility 
of the mode) segments are determined. 

2. If on all branches the sets of allowed segments are not empty, go to step 4. 
Otherwise, there is no solution, exit. 

3. Find all fragments of the DHN, consisting of sequentially connected branches. Each 
of them needs to be equivalent to one branch using the described technique for equivalent 
sequential connection of branches. 

4. Find all fragments of the DHN, consisting of parallel-connected branches. Each of 
them needs to be equivalent to one branch using the described technique for equivalent 
parallel branches. 

5. If the DHN is reduced to one branch, go to point 7, otherwise to point 3. 
6. There will be the set of segments on the remaining branch. In this case, for each pair 

of pockets at points a and b, the following condition will be met: if there is at least one 
admissible HM for a given pair of pressures, in the found set there is a segment 
corresponding to the admissible HM and connecting these pockets. It remains to search for 
the minima and maxima of the explored parameters for this set. 

The main advantages of this method are: no iterative processes; no need to solve large 
systems of equations; the ability to solve problems (4) - (9) simultaneously in one pass. 

4 Computational experiment 
The purpose of the computational experiments was: 1) checking the possibility of the 
proposed method to find solutions to problems (4) - (9) simultaneously; 2) comparison of 
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the performance of the proposed method in solving problems (4) - (9) with the performance 
of continuous optimization methods [13].  

As reference methods for solving problems (4) - (9), we used continuous optimization 
methods [13], which are guaranteed to find solutions to these problems. The essence of 
these methods lies in the iterative reduction of the uncertainty interval, which obviously 
contains the optimal values of the objective function (the investigated quantity). At each 
iteration, the search for an admissible HM was performed by the method of interior points 
[19, 20], which is an iterative process, at each iteration of which a system of algebraic 
equations of large dimension is solved. 

To test the operability and efficiency of the proposed method, a series of computational 
experiments were carried out. Below is a typical example of a computational experiment. 

In the computational experiment, problems (4) - (9) were solved on a conditional DHN, 
the diagrams of which are shown in Fig.2 . Branches 8 - 11 - consumers. The coolant flow 
rates for them are fixed and equal to x8 = 100, x9 = 50, x10 = 100, x11 = 150. The minimum 
available head ( iy ) on these branches is 15. The flow rates at nodes 2 - 15 are zero. The 
resistance vector is (0.00003125, 0.0005, 0.00011111, 0.0005, 0.0004, 0.0003, 0.0002222, 
0.0001, 0.0001, 0.0001, 0.0001, 0.0005, 0.0004, 0.0003, 0.0002222, 0.0005, 0.00011111, 
0.00003125). The efficiency of the method was tested for two variants of pressure 
limitation in the nodes. In the first case 20iP  , 120iP   meters of the water, i I  . In 
the second case 20iP  , 120iP  , 6,9i  ; 6 60P  , 9 70P   meters of the water. 

 
Fig. 2. Schemes of conditional DHN. a - single-line diagram; b - design diagram. 

For the case with the same restrictions, the following restrictions were obtained: 

1 74P  , 1 120P  , 16 20P  , 16 66P  , 1 16 54P P  , 1 16 100P P   meters of water. For 

the second case - 1 99P  , 1 120P  , 16 20P  , 16 35P  , 1 16 64P P  , 1 16 100P P   
meters of water. 

The verification of the correctness of the solution of problems (4) - (9) was carried out 
by reference methods. The check showed the correctness of the results of the proposed 
method. The time spent on the search for the limits of changing the mode parameters at the 
decomposition point by the proposed method (less than 5 minutes) was less than the time 
required to solve this problem by continuous optimization methods (about 3 hours). 

Computational experiments show the efficiency and comparative computational 
efficiency of the proposed method. When solving problems (4) - (9) by the proposed 
method, all 6 problems are solved simultaneously and it is also not necessary to solve 
systems of equations of large dimension, there are no iterative cycles. While solving these 
problems by continuous optimization methods, each problem is solved separately. 

5 Conclusions  
It is shown that the problem of dimension is an obstacle to the creation of methods suitable 
for optimizing the modes of heat supply systems of large dimension, but at the moment 
there are no correct methods for solving it.  
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Fig. 2. Schemes of conditional DHN. a - single-line diagram; b - design diagram. 

For the case with the same restrictions, the following restrictions were obtained: 

1 74P  , 1 120P  , 16 20P  , 16 66P  , 1 16 54P P  , 1 16 100P P   meters of water. For 

the second case - 1 99P  , 1 120P  , 16 20P  , 16 35P  , 1 16 64P P  , 1 16 100P P   
meters of water. 

The verification of the correctness of the solution of problems (4) - (9) was carried out 
by reference methods. The check showed the correctness of the results of the proposed 
method. The time spent on the search for the limits of changing the mode parameters at the 
decomposition point by the proposed method (less than 5 minutes) was less than the time 
required to solve this problem by continuous optimization methods (about 3 hours). 

Computational experiments show the efficiency and comparative computational 
efficiency of the proposed method. When solving problems (4) - (9) by the proposed 
method, all 6 problems are solved simultaneously and it is also not necessary to solve 
systems of equations of large dimension, there are no iterative cycles. While solving these 
problems by continuous optimization methods, each problem is solved separately. 

5 Conclusions  
It is shown that the problem of dimension is an obstacle to the creation of methods suitable 
for optimizing the modes of heat supply systems of large dimension, but at the moment 
there are no correct methods for solving it.  

To solve the dimensionality problem, it is proposed to use a hierarchical approach to 
optimizing the HSS modes.  

The mathematical formulation of the problem of aggregation of distribution heating 
networks, arising at the stage of planning modes, following from the problem of 
optimization of the HM HSS and the hierarchical approach to the problem of optimizing the 
HM HSS.  

To solve the problem of DHN aggregation, an original modification of the loop 
reducing dynamic programming method is proposed. The advantages of this method are: 
the absence of iterative processes, the absence of the need to solve systems of equations of 
large dimension, the possibility of solving the problem of DHN aggregation "in one pass".  

The proposed method is implemented as a research program. The results of its 
application for numerical calculations are presented, illustrating its performance and better 
computational efficiency in comparison with the reference methods. 

 
The study was carried out within the framework of project III.17.4.3 of the fundamental research 
program of the SB RAS (AAAA-A17-117030310437-4) 
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