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Abstract. The article deals with the issues of numerical modeling of problems
with random input data. Finding the joint probability density function of the
vector of output parameters is considered. It is proposed to use computational
probabilistic analysis and the transformation method. A numerical example of
the joint probability density function of the vector of a solution of a system of
nonlinear equations with random input data is given.

1 Introduction

To solve many practical problems, including using Earth remote sensing (ERS) data, an ap-
proach based on numerical modeling is used. The issue becomes much more complicated
when the input parameters of the mathematical model have various types of uncertainty, in-
cluding random ones. In the case of random uncertainty of model parameters, the researcher
must have knowledge of the probability density functions of random characteristics, the joint
distribution function and the form of functional dependencies that establish model relation-
ships between the input and output parameters.

The available knowledge about the properties of random parameters significantly affects
the choice of methods and approaches for solving both particular problems of numerical
modeling and the general problem as a whole, dictated by a practical problem.

One of the main ways to solve such problems is a numerical simulation by the Monte
Carlo method. For example, this approach is used to simulate the interaction of solar radiation
with the plant environment [1].

An important stage of modeling is the generation of sufficient statistics (usually tens, hun-
dreds or more thousands) of trajectories of random parameters. Working with such a volume
of information is characterized by computational complexity and low speed of convergence
of the computational process.

An alternative to the Monte Carlo method is Computational Probabilistic Analysis (CPA),
which offers methods for solving linear and nonlinear systems of equations with random
parameters. The article discusses a mathematical model in the form of a system of functions
with random arguments. A modified method is used to calculate the joint probability density
function of the vector of output parameters. The approach is based on the use of CPA and
the transformation method. Using the example of solving a system of nonlinear equations, an
algorithm for constructing the joint density function of the solution vector is demonstrated. It
uses a new concept of CPA called probabilistic extension.
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2 Transformation method

In this section, we will consider the application of the transformation method for calculat-
ing the joint probability density function of the vector of output parameters of a system of
functions with random arguments [9].

Let the mathematical model be described by a system of functions

z1 = f1(x1, . . . , xn),
...

...
zm = fm(x1, . . . , xn),

(1)

where Z = (z1, . . . , zm), X = (x1, . . . , xn), m ≤ n.
The joint probability density function pZ of a random vector Z can be found directly in

terms of the joint probability density function pX of a random vector X. This will require
defining the equivalent events of infinitesimal rectangles.

For example, consider the linear transformation of random vectors for m = n

Z = AX.

Let us denote by A the matrix of dimension n × n. Suppose that the matrix A has an inverse,
therefore, each vector X corresponds to a unique Z obtained from

X = A−1Z (2)

Figure 1. Transformation of an Infinitesimal Parallelepiped

Consider the infinitesimal rectangular parallelepiped dx shown in figure 1. Points in this
rectangular parallelepiped are mapped to the parallelepiped dz. The infinitesimal rectangular
parallelepiped and the parallelepiped are equivalent events, so their probabilities must be
equal

pX(X)|dX| = pZ(Z)|dZ|,

where |dX|, |dZ| are the areas of parallelepipeds. Thus, the joint probability density function
for Z is defined as

pZ(Z) = pX(X)/(|dZ|/|dX|), (3)

where random vectors X and Z are related to formula (2).
Equation (3) states that the joint probability density function for the random vector X is

the joint probability density function for the random vector Z at the corresponding point, but
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Equation (3) states that the joint probability density function for the random vector X is

the joint probability density function for the random vector Z at the corresponding point, but

it is recalculated using the "stretch factor" |dP|/|dX|. Next, we will consider the general case
m < n. For this purpose, we represent model (1) in the form

z1 = f1(x1, . . . , xn),
...

...
zm = fm(x1, . . . , xn),

zm+1 = fm+1(x1, . . . , xn),
...

...
zn = fn(x1, . . . , xn).

(4)

Suppose that the functions f1, . . . , fm are one-to-one continuously differentiable and there is
an inverse transformation

X = F−1Z1.

The differential of system (4) can be represented as

dZ1 = F′(X)dX,

where F′(X) is matrix of first derivatives. Then the joint probability density function fZ1 (Z1)
for a random vector Z1

fZ1 (Z1) = fX(F−1Z1)/|F′(F−1Z1)|.
Since, in the general case, the random vector Z1 = (z1, . . . , zm, . . . , zn) contains fictitious
components zm+1, . . . , zn, then to calculate the joint probability density function fZ(Z) it is
necessary to integrate over fictitious variables.

In the next section we will illustrate this statement by the example of solving a system of
nonlinear equations with random parameters.

3 System of nonlinear equations

Let us investigate the problem of calculating the solution set for a system of nonlinear equa-
tions

fi(x, k) = 0, i = 1, . . . , n,

where x ∈ Rn is the vector of solutions, k ∈ Rm is the vector of parameters. Relatively k ∈ Rm,
we will assume that the probability density functions are known. We will consider the case
m ≥ n. Note that the case of strict inequality m > n can be reduced to the case m = n of using
the results of probabilistic extensions [8].

Let’s consider a special case m = n. Differentiating the original system of nonlinear
equations, we obtain

F′x(x, k)dx + F′k(x, k)dk = 0,

dx = −(F′x(x, k))−1F′k(x, k)dk.

where F(x, k) = ( f1(x, k), . . . , fn(x, k)).
Thus, knowing the solution x for some parameter values k, it is possible to obtain the

relationship dx and dk.
This fact allows us to calculate the value of the joint probability density function of the

solution. Consider an example of a system of nonlinear equations

x2 + y2 − r2 = 0,

xy − c = 0,
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where r, c are uniform random variables whose probability densities have supports [1, 1.1],
[0.4, 0.5].

Let x0, y0 be the solution of the system for some values r0, c0, then it is true
(

2x0 2y0
y0 x0

) (
dx
dy

)
=

(
2r0dr

dc

)
.

In this case, the rectangle S 0 sides dr, dc goes into a quadrangle S 1 with sides dx, dy. Having
solved the system, we get the values dx, dy. The probability density of the set of solutions at
a point (x0, y0) is proportional to the ratio of the areas |S 0|/|S 1|:

p(x0, y0) = p1(r0, c0)|S 0|/|S 1|.

Thus, in order to construct a joint density function of random variables , we construct grids
in the region of carriers of random variables r, c: {ri, i := 0, . . . ,m}, {ci, i := 0, . . . ,m}.

Let us solve (m + 1)2 systems of nonlinear equations:

x2 + y2 − r2
i = 0,

xy − c j = 0, i, j = 0, . . . ,m.

Figure 2. Triangulation of the domain and joint density function of the solution set

Figure 2 shows the triangulation of the solution domain for a system of nonlinear equa-
tions. The vertices of the triangles are the decision points with the calculated values of the
density of the joint probability function of the solution p(xi, y j). Thus, using linear inter-
polation, on each triangle, the value of the joint probability density function can be plotted.
Shades of gray represent the joint density function of the solution to a system of nonlinear
equations.

Note, to construct the joint density function of the solution, it is required to solve the
system of nonlinear equations only 25 times; for the same purpose, the Monte Carlo method
will require testing 106. The general case of constructing probability densities can be realized
by constructing probabilistic extensions.
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4 Conclusion

The case is considered when the modeling relationships of input and output variables are
presented in the form of systems of equations, both linear and nonlinear, with random uncer-
tainties. The use of CPA and the transformation method makes it possible to find joint proba-
bility density functions of the output parameters of remote sensing problems. The method for
constructing the joint probability density function of the solution removes restrictions on the
requirement of independence of the input parameters, provides an analytical and graphical
opportunity to construct the probabilistic region of possible values of the output parameters.

The proposed modified approach provides the results of numerical simulation with the re-
quired accuracy of calculations, which is guaranteed by the properties of numerical arithmetic
procedures developed within the framework of the CPA.
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