

Methodology for Developing Algorithms for
Compressing Hyperspectral Aerospace Images
used on Board Spacecraft

Assiya Sarinova1, Alexander Zamyatin2

1Toraighyrov university, Electrical Engineering and Automation Department, 140000 Lomov street
64, Kazakhstan
2National research Tomsk state university, Institute of Applied Mathematics and Computer Science,
634050 Lenina avenu 36, Russia

Abstract. The paper describes a method for constructing and
developing algorithms for compressing hyperspectral aerospace
images (AI) of hardware implementation for subsequent use in
remote sensing Systems (RSS). The developed compression
methods based on differential and discrete transformations are
proposed as compression algorithms necessary for reducing the
amount of transmitted information. The paper considers a method
for developing compression algorithms, which is used to develop an
adaptive algorithm for compressing hyperspectral AI using
programmable devices. Studies have shown that the proposed
algorithms have sufficient efficiency for use and can be applied on
Board spacecraft when transmitting hyperspectral remote sensing
data in conditions of limited buffer memory capacity and
communication channel bandwidth.

Introduction
Hyperspectral remote sensing AI is important for observing and studying changes in the

Earth's surface, monitoring natural resources and the consequences of emergencies, etc.
Currently, the development of software systems for transmitting such data is an urgent task.
In solving this problem, there are two areas of research: the development of compression
algorithms used in ground-based remote sensing data reception and processing centers; and
those used on Board SPACECRAFT. Research is actively conducted in the development of
compression algorithms of the first direction, in which there are many publications [1-10,
12]. In the second direction of research, there is a potential for developing algorithms,
dictated by the necessary list of problems for solving the compression problem.

It is proposed to formulate some problems of developing algorithms for compressing
hyperspectral AI that are applicable on Board.

1. The amount of incoming data. Hyperspectral AI has a range of several hundred and
thousands of spectral channels. At the same time, the size of channels reaches hundreds of
thousands of pixels.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

2. Memory resources. The technical characteristics of the hardware that receives, stores,
and transmits such data are limited in memory and processing power.

3. Data transmission. Huge volumes are formed on Board the SPACECRAFT at a
certain speed exceeding the capabilities of the transmitted communication channel, which
has a fixed bandwidth that is insufficient for transmitting uncompressed hyperspectral AI.

4. Data quality. Data quality requirements are very high, as the incoming information is
unique.

Compression cannot be applied under these conditions. The problems listed above that
arise when developing software systems that are applicable on Board the SPACECRAFT
give rise to the following range of requirements for the compression algorithm:

- the speed of a stream of compressed data;
- low computational complexity;
- high compression ratio;
- error control for lossy compression.
Currently, well-known algorithms based on truncated block encoding [1], differential

pulse modulation [1], discrete cosine transform [2], and discrete wavelet transform [2] exist
and are used for compressing hyperspectral AI. These algorithms on the SC bot, which
require large computing resources, do not always meet the above compression
requirements. Therefore, it is necessary to develop new methods for compressing
hyperspectral AI, which are not inferior in their efficiency to the known methods, but
require less computing resources.

Thus, in this paper, we propose to consider a method for developing algorithms for
compressing hyperspectral AI that meet these requirements.

1 Description of the methodology for developing compression algorithms

The methodology for constructing the development of an algorithm for the hardware

implementation of compression should be divided into three stages.
The first stage is the selection and justification of hardware and software for the

compression of hyperspectral AI.
The second stage is the development of lossless and lossless compression algorithms on

programmable integrated circuits.
The third stage is testing and conducting experiments of the developed algorithms

[11,13] in comparison with the known algorithms in terms of performance, speed and
efficiency in compression ratio.

Stage 1. To test the developed algorithms at the first stage, a 32-bit STM32 microcircuit
from Electronics and CocoxIDE software with embedded C ++ language was chosen as a
tested programmable integrated circuit.

Some of the latest processors for embedded systems are those based on the ARM
Cortex-M3 architecture. These processors are designed for use in Digital Signal Processing
(DSP).

General description of ARM architecture and 32-bit STM microcontrollers. ARM
processors are a key component in many successful 32-bit embedded systems. ARM
processors are widely used in mobile phones, tablets and other portable devices. ARMs are
based on RISC architecture, which reduces processor power consumption and thus makes
them ideal for embedded systems.

Benefits of using:
1. Variable number of execution cycles for simple instructions. Simple ARM

instructions require more than one cycle to execute. For example, the execution of the Load
and Save instructions depends on the number of registers that are passed to them.

2

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

2. Memory resources. The technical characteristics of the hardware that receives, stores,
and transmits such data are limited in memory and processing power.

3. Data transmission. Huge volumes are formed on Board the SPACECRAFT at a
certain speed exceeding the capabilities of the transmitted communication channel, which
has a fixed bandwidth that is insufficient for transmitting uncompressed hyperspectral AI.

4. Data quality. Data quality requirements are very high, as the incoming information is
unique.

Compression cannot be applied under these conditions. The problems listed above that
arise when developing software systems that are applicable on Board the SPACECRAFT
give rise to the following range of requirements for the compression algorithm:

- the speed of a stream of compressed data;
- low computational complexity;
- high compression ratio;
- error control for lossy compression.
Currently, well-known algorithms based on truncated block encoding [1], differential

pulse modulation [1], discrete cosine transform [2], and discrete wavelet transform [2] exist
and are used for compressing hyperspectral AI. These algorithms on the SC bot, which
require large computing resources, do not always meet the above compression
requirements. Therefore, it is necessary to develop new methods for compressing
hyperspectral AI, which are not inferior in their efficiency to the known methods, but
require less computing resources.

Thus, in this paper, we propose to consider a method for developing algorithms for
compressing hyperspectral AI that meet these requirements.

1 Description of the methodology for developing compression algorithms

The methodology for constructing the development of an algorithm for the hardware

implementation of compression should be divided into three stages.
The first stage is the selection and justification of hardware and software for the

compression of hyperspectral AI.
The second stage is the development of lossless and lossless compression algorithms on

programmable integrated circuits.
The third stage is testing and conducting experiments of the developed algorithms

[11,13] in comparison with the known algorithms in terms of performance, speed and
efficiency in compression ratio.

Stage 1. To test the developed algorithms at the first stage, a 32-bit STM32 microcircuit
from Electronics and CocoxIDE software with embedded C ++ language was chosen as a
tested programmable integrated circuit.

Some of the latest processors for embedded systems are those based on the ARM
Cortex-M3 architecture. These processors are designed for use in Digital Signal Processing
(DSP).

General description of ARM architecture and 32-bit STM microcontrollers. ARM
processors are a key component in many successful 32-bit embedded systems. ARM
processors are widely used in mobile phones, tablets and other portable devices. ARMs are
based on RISC architecture, which reduces processor power consumption and thus makes
them ideal for embedded systems.

Benefits of using:
1. Variable number of execution cycles for simple instructions. Simple ARM

instructions require more than one cycle to execute. For example, the execution of the Load
and Save instructions depends on the number of registers that are passed to them.

2. Ability to combine commands of shift and rotation with commands for information
processing.

3. Conditional execution - the statement is executed only if a specific condition is met.
This improves performance and eliminates branching statements.

4. Enhanced instructions - ARM processors support enhanced DSP instructions for
digital signal operations.

There are two software products that provide functionality for executing firmware
without using a development environment: STM32 ST-LINK Utility and ST Visual
Programmer.

STM32 ST-LINK Utility is designed to work with 32-bit controllers via ST-LINK
interface.

The general characteristics of the core of STM32 microcontrollers are presented in table
1.

Table 1. Main characteristics of the core of STM32 microcontrollers
Characteristic Value

data word width, bit 32
architecture harvard
conveyor 3- stepped
set of instructions RISC
organization of program memory, category 32
prefetch buffer, bit 2х64
average instruction size, bytes 2
interrupt type vectorized
interrupt response delay 12 cycles
power management modes sleep, sleep on exit, deep sleep
debug interface ST-LINK, JTAG

Microcontrollers of this type are built on the Harvard architecture and have a 3-stage

pipeline that minimizes command execution time. They are designed to build systems with
maximum energy efficiency and have multiple power management modes. They use
internal memory interfaces that are wider than the average instruction length. This
minimizes the number of accesses to the memory bus, and hence the power consumption
associated with bus operations and non-volatile memory reads. Continuous interrupt
processing technology with the exception of internal stack operations reduces the response
time to interrupts and eliminates unnecessary stack operations.

The STM32F4 Discovery Board is equipped with:
- A stm32f407vgt6 microcontroller with a Cortex-M3 core clocked at 168 MHz, 1 MB

of Flash memory, 192 KB of RAM;
- ST-Link debugger for debugging and programming;
- power the Board via USB or an external 5V power supply;
- ST MEMS LIS302DL motion sensor and digital accelerometer outputs;
- sound sensor MP45DT02, ST MEMS;
- CS43L22 audio DAC;
- eight LEDs;
- two buttons (for user programming and for restarting).
Thus, the debugging Board is equipped with a large number of peripherals, which

allows you to implement algorithms of varying complexity on it.
2. Stage. An original and efficient algorithm for lossless compression of hyperspectral

AI by regression transformation is developed. An algorithm for lossless compression of
hyperspectral aerospace images, characterized by the use of channel-difference linear
regression transformation, which significantly reduces the range of data changes and
increases the compression rate due to this. The main idea of the transformation is an

3

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

algorithm that finds pairs of correlated channels and then creates lossless transformed
blocks using regressin analysis, which reduces the size of the aerospace image channels and
converts them before compressing the modified Huffman algorithm.

Several orthogonal transformations adapted for lossy compression of hyperpectral AI
have been developed. An adaptive algorithm for discrete-cosine transformation with
subsequent quantization with a loss level and compression by Huffman encoding is
developed.

Adapted Huffman algorithm. The well-known standard Huffman code table is
recommended for JPEG images, not for hyperspectral AI, so the generated one is suggested
for encoding. Modification of the table is as follows:

1) each possible pair of RZ is assigned a natural number intMerge starting with two;
2) consider the binary notation of the number intMerge and pay attention to its length

(lenMerge). For example, for (R;Z)=(4;7) intMerge = 117, binary entry -1110101,
lenMerge = 7;

3) let's build the code as follows: take one (lenMerge - 1) times, assign 0 and the binary
entry of the number intMerge without the leading unit. For clarity, after zero, we will add
an apostrophe: 1111110’110101.

For an example from the table: (R;Z) = (14; 1) intMerge = 17, binary entry-10001,
lenMerge = 5. Huffman Code: 11110 ' 0001.

The number Z does not exceed 14, since we replace the sequence of 15 zeros with the
code 111111110 ' 00000000 (as if intMerge was 256). The code for the end of the block is
00. The pair (R;Z)=(15;0) is encoded as 01. If R exceeds 16, we assign intMerge, starting
from 257, in the same way.

This modification made it possible to increase the compression rate of hyperspectral AI
by analyzing the frequencies of the R and Z pairs, since codes of shorter length are
allocated to more common values during encoding.

At the second stage, an algorithm for multithreaded compression processing was
developed and organized to improve the computational efficiency of compression.

Algorithm for multiple streams of hyperspectral AI encoding.
1. determining the number of encoded pairs in the set of ordered pairs (CBM);
2. the first thread receives and encodes the main generating file;
3. the second and subsequent streams encode subsequent pairs in the CBM;
4. upon release, all subsequent streams receive the next pair of channels until the CBM

is empty;
5. when encoding is complete, we release all threads.
The algorithm is a single thread during decoding.
1. consider the next pair in the CBM. Let it be k1 and k2, where k1 is the generating file

and k2 is the regressed file;
2. if the file k1 is the main generating file, or it is already decoded, then we decode the

pair (k1- k2);
3. if the file k1 has not been decoded yet (it may be in the process), then we consider the

next pair after k1, k2 in the CBM (without discarding it);
4. go to step 2 – if such a pair is found, go to standby mode-if not.
5. at the end of decoding, we notify the rest of the threads in waiting, go to step 1 (if the

CBM is not empty), or complete the execution of the thread). In this case, we discard the
encoded pair (k1 - k2) from the CBM.

2 Experiments of the developed hardware implementation
algorithms

4

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

algorithm that finds pairs of correlated channels and then creates lossless transformed
blocks using regressin analysis, which reduces the size of the aerospace image channels and
converts them before compressing the modified Huffman algorithm.

Several orthogonal transformations adapted for lossy compression of hyperpectral AI
have been developed. An adaptive algorithm for discrete-cosine transformation with
subsequent quantization with a loss level and compression by Huffman encoding is
developed.

Adapted Huffman algorithm. The well-known standard Huffman code table is
recommended for JPEG images, not for hyperspectral AI, so the generated one is suggested
for encoding. Modification of the table is as follows:

1) each possible pair of RZ is assigned a natural number intMerge starting with two;
2) consider the binary notation of the number intMerge and pay attention to its length

(lenMerge). For example, for (R;Z)=(4;7) intMerge = 117, binary entry -1110101,
lenMerge = 7;

3) let's build the code as follows: take one (lenMerge - 1) times, assign 0 and the binary
entry of the number intMerge without the leading unit. For clarity, after zero, we will add
an apostrophe: 1111110’110101.

For an example from the table: (R;Z) = (14; 1) intMerge = 17, binary entry-10001,
lenMerge = 5. Huffman Code: 11110 ' 0001.

The number Z does not exceed 14, since we replace the sequence of 15 zeros with the
code 111111110 ' 00000000 (as if intMerge was 256). The code for the end of the block is
00. The pair (R;Z)=(15;0) is encoded as 01. If R exceeds 16, we assign intMerge, starting
from 257, in the same way.

This modification made it possible to increase the compression rate of hyperspectral AI
by analyzing the frequencies of the R and Z pairs, since codes of shorter length are
allocated to more common values during encoding.

At the second stage, an algorithm for multithreaded compression processing was
developed and organized to improve the computational efficiency of compression.

Algorithm for multiple streams of hyperspectral AI encoding.
1. determining the number of encoded pairs in the set of ordered pairs (CBM);
2. the first thread receives and encodes the main generating file;
3. the second and subsequent streams encode subsequent pairs in the CBM;
4. upon release, all subsequent streams receive the next pair of channels until the CBM

is empty;
5. when encoding is complete, we release all threads.
The algorithm is a single thread during decoding.
1. consider the next pair in the CBM. Let it be k1 and k2, where k1 is the generating file

and k2 is the regressed file;
2. if the file k1 is the main generating file, or it is already decoded, then we decode the

pair (k1- k2);
3. if the file k1 has not been decoded yet (it may be in the process), then we consider the

next pair after k1, k2 in the CBM (without discarding it);
4. go to step 2 – if such a pair is found, go to standby mode-if not.
5. at the end of decoding, we notify the rest of the threads in waiting, go to step 1 (if the

CBM is not empty), or complete the execution of the thread). In this case, we discard the
encoded pair (k1 - k2) from the CBM.

2 Experiments of the developed hardware implementation
algorithms

To determine the effectiveness of the proposed adaptive algorithm in terms of
compression ratio and computational efficiency, as well as the limits of its applicability, a
number of experiments were performed on hyperspectral AI (Aviris remote sensing
system), (Fig.1).

Fig. 1. Adapted compression algorithm for hyperspectral AI:
a) calculation time; b) execution efficiency

The experiments were performed on a PC with an IntelCore i7, 2.5 GHz processor and 4

GB of RAM running the Windows 10 operating system
JPEG Lossless/ Lossy compression algorithms, 7z archiver, and Winrar were used as

analogs. The results of compression experiments using the proposed method are presented
in tables 2-3. For comparison, the compression ratio and processing speed averaged over all
experiments are taken

Table 2. Comparison of lossless compression algorithms

Compression algorithm Compression ratio Calculation time, s
JPEG Lossless 3,5 221452

7z 3,8 205146
Winrar 3,9 220738

Adaptive algorithm 5,9 74816

Table 3. Comparison of lossy compression algorithms
Compression algorithm Compression ratio Calculation time, s

JPEG Lossy 5,7 225672
Adaptive algorithm 9,2 78235

It should be noted that in these experiments, the adaptive algorithm shows results in a

compression ratio higher than the known solutions by more than 55 %, and significantly
exceeds the processing speed by 3 times.

Conclusion

Based on the results of the study, it is shown that the proposed method for developing
lossless and lossy compression algorithms based on hardware implementation is highly
effective in the compression ratio and processing speed. This is due to the fact that the
algorithms were adapted for this implementation in order to be able to be used on Board the
spacecraft. This method of constructing algorithms has a high speed due to the transition to
hardware that operates with bits, providing an increase in speed at times.

Adaptive algorithms can be used both in remote sensing systems and in any other
applications for processing and compressing hyperspectral AI.

5

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

References:
1. Gonsales R., Vuds R. Cifrovaya obrabotka izobrazhenij. - M.: Tekhnosfera, 2012. – pp.

55-67. (In Russian).
2. Kashkin V. B., Suhinin A. I. Cifrovaya obrabotka aerokosmicheskih izobrazhenij //

Krasnoyarsk: SFU. 2008. 278 p. (In Russian).
3. Gashnikov, M.V. Bortovaya obrabotka giperspektral'nyh dannyh v sistemah

distancionnogo zondirovaniya Zemli na osnove ierarhicheskoj kompressii / M.V.
Gashnikov, N.I. Glumov // Komp'yuternaya optika. – 2016. – vol. 40, no 4. – pp. 543–
551. (In Russian).

4. Petrov E.P., Harina N.L., Suhih P.N. Metod szhatiya mnogorazryadnyh sputnikovyh
snimkov bez poter'. Sovremennye problemy distancionnogo zondirovaniya Zemli iz
kosmosa. 2016. vol. 13. no 2. pp. 203–210. (In Russian).

5. Fernando García-Vílchez, Jordi Muñoz-Marí, Maciel Zortea, Ian Blanes, Vicente
González-Ruiz, Gustavo Camps-Valls, Antonio Plaza. On the Impact of Lossy
Compression on Hyperspectral Image Classification and Unmixing. IEEE Geoscience
and remote sensing letters, vol. 8, no. 2, 2011.

6. Meena B. Vallakati and Dr. R. R. Sedamkar. Low Complexity DCT-based DSC
approach for Hyperspectral Image Compression with Arithmetic Code. IJCSI
International Journal of Computer Science Issues, vol. 9, Issue 5, no 1, September
2012.

7. Yongjian Nian, Mi He, and Jianwei Wan. Low-Complexity Compression Algorithm
for Hyperspectral Images Based on Distributed Source Coding. Hindawi Publishing
Corporation. Mathematical Problems in Engineering. Vol. 2013, Article ID 825673, 7
p.

8. Ganeshraj P. and Sivasankar A. Scalable Compression Method for Hyperspectral
Images // Research Journal of Engineering Science. vol. 2(3), pp.1–5. 2013.

9. Diego Valsesia, Enrico Magli . A Novel Rate Control Algorithm for Onboard
Predictive Coding of Multispectral and Hyperspectral Images. 2014.

10. Dr. S.M.Ramesh, P.Bharat, J.Anand, J.Anbu Selvan. Analysis of Lossy Hyperspectral
Image Compression Techniques // International Journal of Computer Science and
Mobile Computing, Vol.3 Issue.2, February – 2014, pp. 302–307.

11. A. Sarinova, A. Zamyatin. E3S Web Conf 149, 02003 (2020).
12. S. Kudubayeva, N. Amangeldy, A. Sundetbayeva and A. Sarinova. ACM International

Conference Proceeding Series 8, (2019).
13. A. Sarinova, A. Zamyatin and P. Cabral. DYNA (Colombia) 82 (190), 166-172

(2015).

6

E3S Web of Conferences 223, 02007 (2020)	 https://doi.org/10.1051/e3sconf/202022302007
RPERS 2020

