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Spatiotemporal analysis of the land surface temperature
distribution over the territory of Novosibirsk city based on
Landsat data
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Abstract. The paper discusses the applicability of Landsat 8 data for analyzing
the land surface temperature distribution over the territory of Novosibirsk. The
satellite data is compared with the data from ground meteorological stations.
Using cloud-based systems and methods for processing time series of satellite
data, a composite image of the temperature field for the territory of Novosibirsk
is built; trends and anomalies in the temperature distribution in the urban area
are studied. The results could be applied in urban development analysis and
management of the city territory.

Availability of remote sensing data of low, moderate and high spatial resolution gave rise
to development of tools for its online processing. Probably the most widely used such tool
is Google Earth Engine, other examples include VEGA-Science developed at the Space Re-
search Institute of Russian Academy of Science [1]. Federal Research Center for Information
and Computational Technologies maintains an archive of satellite remote sensing data accu-
mulated since 2007 and an information system for online retrieval and processing of satellite
data time series [2].

Transition from individual satellite images to time series makes it possible not only to
follow the dynamics of change but to compute statistical characteristics of different environ-
mental characteristics such as land surface temperature (LST) of a certain region. This in
turn permits further statistical processing such as removal of outliers and locating persistent
anomalies.

Land surface temperature retrieved from Landsat data is used extensively for many ap-
plications including observation of urban heat islands, locating persistent anomalies, and
monitoring urban sprawl. Examples include studies of urban heat islands of cities located
in moderate climate zones such as Moscow and Nizhny Novgorod, as well as largest cities
located above the Polar Circle, the cities of Murmansk, Norilsk, Vorkuta, Apatity, Salekhard,
Noviy Urengoy, Nadym [3-7]. Detection of changes of the urban landscape of Krasnoyarsk
was performed using the land surface temperature data retrieved from thermal infrared satel-
lite imagery [8]. We remark that the authors of the papers cited above use individual satellite
scenes for mapping and use pairs of images for the task of change detection. We hypothesize
that such methods might be sensitive to the choice of images.

The uncertainty in satellite measurements of land surface temperature can be quantified
by comparing LST retrievals with the data from ground weather stations [9].
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To retrieve land surface temperature from Landsat data we apply the single channel algo-
rithm [10, 11].
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where T'p denotes the brightness temperature (K) determined from observed radiation inten-
sity in a satellite spectral channel, A - the central wavelength of the satellite spectral channel,
for Landsat Band 10 it equals 10.8um, ¢; = h-c/kp = 1.4388 x 1072mK = 14388 umK
is the second Planck radiation constant expressed as the product of Planck constant 7 =
6.626 x 1073*Js; kg = 1.38 x 1073 JK~! the Boltzmann constant; ¢ = 2.998 x 103 ms~! is
the speed of light; and ¢ is the surface emissivity.

Several approaches to estimating surface emissivity can be found in the literature. The
most commonly used are (1) ¢ is considered constant usually equal to 0.98; (2) land use
classification is performed and each class is assigned a specific emissivity coefficient (3) the
emissivity coefficient is estimated from NDVI [12]. In this study we exclusively use the
emissivity coefficient estimated from NDVI.

We compared the temperature values obtained with the Equation 1 with emissivity esti-
mated from NDVI and with emissivity set constant at 0.98 and encountered differences that
did not exceed a tenth of a degree. Therefore we conclude that the temperature is not partic-
ularly sensitive to this parameter.

When computing temporal composites we applied masks to exclude clouds and cloud
shadows extracted from Landsat QA band.

To perform the computation and compose the multitemporal images we used Google
Earth Engine. This instrument provides access to Landsat 8 data processed with atmospheric
correction!.

Landsat 8 thermal bands have spatial resolution of approximately 100 meters however in
Google Earth Engine this data is resampled to 30 meters which makes this data particularly
suitable for use at an urban scale.

We compare the land surface temperature maps with the land use data obtained from
NextGIS? and map data from Google Maps and Bing Maps.

To validate the temperature data retrieved from Landsat we used the measurements from
the five weather stations located in Novosibirsk. It is expected that the air temperature at
2 meter height can differ from the surface temperature, so we were looking not for abso-
lute equality between the time series but for a significant correlation between the two. We
retrieved archived weather data for the period from 2013 to 2019 from RP5 website®. The
number of usable satellite measurements at the locations of the weather stations differs from
station to station and from month to month yet there are common trends and the correlation
was over 90% in all cases.

We used the available satellite data to perform a qualitative assessment of the land sur-
face temperature field and to determine patterns in the distribution of surface temperature in
Novosibirsk and adjacent areas, and to identify persistent thermal anomalies. Locating such
thermal anomalies may be useful for environmental management and for the evaluation of
the impact of industrial zones.

Figure 1a shows the composite image based on the series of Landsat 8 images for the
periods without snow (from May to September in years 2013-2019). The next Figure 1b
shows the same image with land use data imposed over it. On Figure 1c the previous image

Thttps://developers.google.com/earth-engine/datasets/catalog/landsat
Zhttps://data.nextgis.com/ru/?lvl=regions&country=ru
3https://rp5.ru
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is shown with the layer of roads and railways. The same process was applied to the data
collected over the periods with snow (from November to March, 2013-2019)
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Figure 1. Temperature maps of Novosibirsk: (a) The original thermal image composite (b) composite
with overlayed industrial zones (c) composite with industrial zones and road and railway networks
overlayed

From Figure 1 one can see that the zones with above average surface temperature mostly
correspond to industrial locations and the road network. In future we plan to perform a
quantitative analysis of this link to determine the rate of growths of industrial zones.

We also studied the link between the temperature distribution and land use categories in
Novosibirsk. The histogram and the temperature intervals corresponding to different cate-
gories are shown in Figure 2.
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Figure 2. A histogram of average temperatures in Novosibirsk and the schematic maps of the land use
categories corresponding to the modes of the histogram
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Table 1. Main statistical characteristics by year

Year | Scenes Min Max | Mean | Stdev
used
2019 51 14.03 | 34.45 | 21.86 | 3.04
2018 46 13.65 | 3549 | 21.91 | 2.70
2017 50 474 | 40.58 | 22.82 | 3.40
2016 53 15.30 | 35.11 | 22.11 | 2.97
2015 43 13.71 | 37.04 | 21.76 | 3.40
2014 44 5.67 | 36.10 | 22.66 | 3.27

Empirically we identified the four main land use categories within the city:

1. water bodies,

2. vegetation,

3. built-up areas and open soil,

4. industrial zones roads and railways

In future work we intend to quantify the reliability of classification into the 4 main cat-
egories based on land surface temperature. This will inform us of the practicality of using
surface temperature as an additional feature for land use classification.

The temperature maps show that while the temperature distribution during the periods

without snow within the boundaries of the city may change year upon year the average tem-
perature remains relatively constant (see Figure 3, Table 1).
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Figure 3. Spatial distribution of average temperatures during the periods without snow in Novosibirsk

in 2014-2019

The results presented in this report include a method to produce land surface temperature
maps based on the atmospherically corrected Landsat 8 satellite data. We confirmed that there
is a strong correlation between the land surface temperature time series and air temperatures
measured at weather stations at 2 meter height. Therefore land surface temperature can be
used as a reliable source of information on the condition of the land cover of urban territories.

We also show that online instruments for processing of Landsat 8 time series can be used
to identify spatial patterns in the land surface temperature distribution while the land surface
temperature data can serve as an additional feature for classification of urban landscapes.
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