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Abstract. We present algorithms and results of automated processing of 
LiDAR measurements obtained during VEGILOT measuring campaign in 
Paris in autumn 2014 in order to study horizontal turbulent atmospheric 
regimes on urban scales. To process images obtained by horizontal 
atmospheric scanning using Doppler LiDAR, the method is proposed based 
on texture analysis and classification using supervised machine learning 
algorithms. The results of the parallel classification by various classifiers 
were combined using the majority voting strategy. The obtained estimates 
of accuracy demonstrate the efficiency of the proposed method for solving 
the problem of remote sensing of regional-scale turbulent patterns in the 
atmosphere.  

1 Introduction 
Atmospheric turbulence is a key meteorological characteristic, responsible for the dispersion 
of the air pollution and the cloud formation. When wind speed measurements are available 
with sufficient spatial and temporal resolution, the estimation of turbulence parameters 
becomes possible. As an example, the ground-based Doppler wind lidar Leosphere WLS100 
allows remote measurements of radial wind speed profiles with the temporal resolution of 
about one profile by second and the spatial resolution of 50 meters. 

The measurement database used in this study is based on data of VEGILOT measurement 
campaign [1], which was held in Paris in September – October 2014. This campaign was 
aimed at studying urban atmospheric dynamics, air pollution and turbulent regimes from lidar 
measurements. More information about VEGILOT campaign could be found in [1]. 

Horizontal wind turbulent patterns was calculated based on horizontal radial wind scans 
(see [2, 3]). Typical examples of these images are presented at Fig.1. Three classes of local 
atmospheric patterns were introduced: Thermals, Rolls and Streaks. An additional fourth 
class ’Others’ contains patterns that could not be classified as these three turbulence types. 
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Each type of turbulence structure forms a specific cloud pattern and could be observed on 
satellite images. 

   
Fig. 1. Examples of turbulent structure patterns: A) Thermals observed on October 10 at 1111 UTC, 
B) Rolls observed on September 11 at 1100 UTC and C) Streaks observed on September 11 at 1957 
UTC. 

2 Description of Algorithms 
A few thousands of images was obtained for the two-month campaign. The following 
supervise machine learning SML algorithms was applied to classify local atmospheric 
patterns: 
• Parzen – Rozenblatt window (PRW); 
• K-nearest-neighbors (KNN), a few number of neighbors were tested: К=1, К=3, and К=5;   
• Error-correcting output codes with support vector machine (SVM); 
• Quadratic discriminant analysis (QDA). 

An expert classified 150 patterns to construct the training set [2]. The in-situ 
meteorological and satellite data were used in addition to lidar measurements. Since SML 
algorithms require numerical values characterizing patterns, Haralick texture features were 
applied for image classification [4]. Below we describe briefly how the features were 
calculated, see [2] for more details. 

The following four statistics were calculated: Contrast, Homogeneity, Correlation and 
Energy. Each of those characteristics was calculated at different distances and directions of 
adjacency. The neighbors ranging from first until 30th for each statistic allow generating 
30*4 = 120 angular functions [2, 4]. Each of these functions was characterized by the 
following three properties: amplitude (maximum value minus minimum value), integral, 
symmetry.  

Three additional features were added to those 30*4*3 = 360 textural features, namely the 
time of the scan, the average wind speed and the cosine fit error [2, 3]. Thus, 363 features 
(predictors) were calculated for each turbulent image.   

To avoid the curse of dimensionality, the cross-validation stepwise forward selection 
method was implemented, since the dimension of feature vector largely exceeds the number 
of patterns in the learning ensemble. The number of optimal features selected [2, 5] vary 
between 2 and 20.   

The SML classifiers were combined in one multiple classification (MC) algorithm using 
the majority voting strategy [6].  
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3 Results and Discussion 
The total overall accuracy (TA) score for each classification technique was presented in the 
table 1. It shows the percentage of correctly classified images based on cross validation. 

We can see that among applied standard SML algorithms the QDA has the best TA 
performance, following by SVM and KNN. The PRW algorithm has the lowest TA. It shows 
that SML algorithms, that produce more complex decision boundaries are less accurate for 
the given classification problem. We can also note the significant TA improvement for the 
proposed MC algorithm. 

 Table 1. Total overall accuracy for applied SML algorithms. 
SML Algorithm PRW 1NN 3NN 5NN SVM QDA MC 

TA, % 82.7 90 88.7 89.3 90.7 92 94.7 
 
A confusion matrix for MC is presented in Fig. 2A. All types of turbulent patterns are 

identified with good accuracy. After the learning step, in the classification step, the MC 
algorithm was applied to a complete lidar dataset (test set) of 4557 patterns. Streaks was 
detected in 23% of cases, Rolls in 10% and Thermals in 17%. 

In Fig. 2B, the distribution of turbulence types by the time UTC is shown. As expected, 
Streaks are generally observed during the nighttime, while Thermals and Rolls are detected 
in the daytime (see [2] for more details). 

 

    
Fig. 2. А) Confusion Matrix for MC algorithm. B) Histogram of resulting distribution of turbulent 
classes by time. 

4 Conclusions and Perspectives 

On the basis of the results of large lidar dataset processing, we can conclude that the proposed 
method allows efficient solving the problem of turbulent regimes classification. The 
comparison of SML algorithms shows that the accuracy of relatively simple QDA is better 
than accuracy of other SML algorithms that construct more complicated decision boundaries 
(PRW, KNN and SVM). An important increase of the total accuracy could be achieved by 
combining a few SML algorithms in MC system. This technique was successfully applied 
for the study of atmospheric turbulence in Paris region in the autumn.  

In the future studies, we are going to optimize the procedure of classifiers’ combination 
and to increase the number of Haralick texture features. The proposed algorithm will be 
applied to characterize the atmospheric turbulence in coastal areas.  
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