

Algorithm for constructing logical operations to
identify patterns in data

L.A. Lyutikova1,* and E. V. Shmatova1

1Institute of Applied Mathematics and Automation KBSC RAS (IAMA KBSC RAS), 89a, st.
Shortanova, 360000, KBR, Nalchik, Russia

Abstract. Neural networks have proven themselves in solving problems
when the input and output data are known, but the cause and effect
relationship between them is not obvious. A well-trained neural network will

find the right answer to a given request, but will not give any idea about the
rules that form this data. The paper proposes an algorithm for constructing
logical operations, in terms of multi-valued logic, to identify hidden patterns
in poorly formalized areas of knowledge. As the basic elements are
considered many functions of the multi-valued logic of generalized addition
and multiplication. The combination of these functions makes it possible to
detect relationships in the data under study, as well as the ability to correct
the results of neural networks. The proposed approach was considered for
classification problems, in the case of multidimensional discrete features,

where each feature can take k-different values and is equivalent in
importance to class identification.

1 Introduction

In practice, there are various approaches to the construction of machine learn-ing algorithms

[1-3]. Many of them successfully cope with the tasks, but at the same time, they do not give

an idea about the laws of the processed data. Thus, it can be assumed that the neural network
in weighted coefficients provides the rules for object recognition, but these rules are not

explicit, and it can be difficult to determine the cause of the error. In this paper, we construct

an algorithm for finding logical functions that provide an opportunity for more explicit

interpreta-tion necessary for decision-making..

2 Formulation of the problem

The object will be represented by 𝑛 -dimensional vector, 𝑛 - the number of characteristic

features of the object in question, the 𝑗 -th coordinate of this vector is equal to the value of

the 𝑗 -th characteristic, 𝑗 = 1, . . , 𝑛. Information about any characteristic of the object may be

missing. The dimensionality of the considered property of the 𝑘𝑖 ∈ [2, . . . , 𝑁], N - object

depends on the encoding method of the i-th characteristic [4].

* Corresponding author: lylarisa@yandex.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

mailto:lylarisa@yandex.ru

Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}𝑥𝑖 ∈ {0,1, . . . , 𝑘𝑖 − 1}, where 𝑘𝑖 ∈ [2, . . . , 𝑁], , is a set of properties

that characterizes a given object. 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑚} - many considered objects. For each

object 𝑦𝑖 there is a corresponding set of features

𝑥1(𝑦𝑖), . . . , 𝑥𝑛(𝑦𝑖): 𝑦𝑖 = 𝑓(𝑥1(𝑦𝑖), . . . , 𝑥𝑛(𝑦𝑖)).

Or

𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},

Where

𝑥𝑖 ∈ {0,1, . . . , 𝑘𝑟 − 1}, 𝑘𝑟 ∈ [2, . . . , 𝑁],𝑁 ∈ 𝑍 - input,

𝑋𝑖 = {𝑥1(𝑦𝑖), 𝑥2(𝑦𝑖), . . . , 𝑥𝑛(𝑦𝑖)}, 𝑖 = 1, . . . , 𝑛, 𝑦𝑖 ∈ 𝑌, 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑚} - output:

(

𝑥1(𝑦1) 𝑥2(𝑦1) . . . 𝑥𝑛(𝑦1)
𝑥1(𝑦2) 𝑥2(𝑦2) . . . 𝑥𝑛(𝑦2)
.

𝑥1(𝑦𝑚) 𝑥2(𝑦𝑚) . . . 𝑥𝑛(𝑦𝑚)

) → (

𝑦1
𝑦2
. . .
𝑦𝑚

)

It is necessary to construct a function such that 𝑌 = 𝑓(𝑋).
A function 𝑌 = 𝑓(𝑋) is called a decisive function.

The dependence under consideration can be approximated using a neural network built

on the basis of elements that implement external summation and a continuous scalar function.

𝑠𝑝(𝑥1, . . . , 𝑥𝑛) = ∑𝑤𝑖∏𝑥𝑖

where {𝑤1 , 𝑤2 , . . . , 𝑤𝑘}is the set of weights of a given  neuron that recognizes 𝑘

elements of a given subject area 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑘} formed by a corresponding set of

features {𝑋1, . . . , 𝑋𝑘}.
Of great interest are direct sums that allow you to simultaneously form the architecture

of a computer network and configure its parameters, without resorting to solving complex

optimization problems to achieve the correctness of its functioning [5].

3 An algorithm for constructing a decisive function

Consider a multi-valued logical system 𝐿 = ⟨𝐿, 𝑥, &,∨, ,→⟩,𝐿 = {0,1, . . . , 𝑘 − 1}.

Definition: Set of functions𝜎(𝑥, 𝑦): such that 𝜎(𝑥, 0) = 𝜎(0, 𝑥) = 𝑥, we will call

functions of generalized addition.

To construct the decisive function 𝑌 = 𝑓(𝑋), it is required to find a set of functions Σ that

satisfy the following conditions: Σ(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) = 𝑦.

The algorithm is built in the form of a tree.

We assume that Σ(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) = Σ(𝑎1, . . . , 𝑎𝑛−1) + 𝑎𝑛 = 𝜎(Σ(𝑎1, . . . , 𝑎𝑛−1), 𝑎𝑛).
Great Σ(𝑎1, . . . , 𝑎𝑛−1) suspense, but it must take on one of the meanings 𝐿 = {0,1, . . . , 𝑘 −
1}. This implies the need to fulfill one of k conditions:

𝛴(𝑎1, . . . , 𝑎𝑛−1) = 0, 1 1(,...,) 1na a  
 ,…, 𝛴(𝑎1, . . . , 𝑎𝑛−1) = 𝑘 − 1 (1)

Means

𝛴(0, 𝑎𝑛) = 𝑦, 𝛴(1, 𝑎𝑛) = 𝑦, …, 𝛴(𝑘 − 1, 𝑎𝑛) = 𝑦, (2)

2

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

those get to the branching tree.

In the next step, we consider the following relation

𝛴(𝑎1, . . . , 𝑎𝑛−1) = 𝛴(𝑎1, . . . , 𝑎𝑛−2) + 𝑎𝑛−1 = 𝜎(𝛴(𝑎1, . . . , 𝑎𝑛−2), 𝑎𝑛−1),

taking into account the previously formulated assumptions regarding the values of

Σ(𝑎1, . . . , 𝑎𝑛−1), i.e. each of the branches (2) will in turn split into another k. k.

Continuing to carry out the steps described above, we construct a tree of admissible values

of the truth tables Σ.

If at some step the assumption contradicts the assumption made earlier regarding the

given variant of the function Σ, then such a branch is a dead end and it is discarded.

If at some node all branches are dead ends, then this node itself is deleted from the
decision tree.

The last step in these actions is to consider the expression Σ(𝑎1, 𝑎2), after which the

process of finding a solution ends.

The set of feasible solutions of the function Σ is collected from the leaves of the tree to

the root. As a result, we obtain truth tables of the function Σ that satisfy the given conditions.

We illustrate the operation of the algorithm using the example of three-valued logic.

Let three-valued logic be given 𝐿 = ⟨𝐿, 𝑥, &,∨, ,→⟩,𝐿 = {0,
1

2
, 1}. And let it be given:

Σ (1,0,
1

2
, 1) =

1

2
. We construct a decision tree for this example.

Consider 1 branch: Σ (1,0,
1

2
) = 0 ⇒ it is necessary that Σ(0,1) =

1

2
, but this contradicts

the condition 𝜎(𝑥, 0) = 𝜎(0, 𝑥) = 𝑥. So this branch can be discarded.

Consider a 2 branch Σ (1,0,
1

2
) =

1

2
⇒ Σ (

1

2
, 1) =

1

2
.. This is possible, therefore we build

branches further:

1. Σ(1,0) = 0 - impossible, therefore, the branch can be dropped;

2. Σ(1,0) =
1

2
 - impossible, therefore, the branch can be dropped;

3. Σ(1,0) = 1 - possible.

Restoring the chain of actions, we obtain:

𝛴(1,0) = 1, 𝛴 (1,
1

2
) =

1

2
, 𝛴 (

1

2
, 1) =

1

2
.

From this, we can conclude: that the obtained set of solutions (we will call the class of

solutions) has the commutativity property (Table 1).

Consider the 3-rd branch: Σ (1,0,
1

2
) = 1 ⇒ Σ(1,1) =

1

2
. This is perhaps why we build the

branches further:

1. Σ(1,0) = 0 - impossible, therefore, the branch can be dropped;

2. Σ(1,0) =
1

2
 - impossible, therefore, the branch can be dropped;

3. Σ(1,0) = 1 - possible. Restore the chain of actions, we get:

𝛴(1,0) = 1, 𝛴 (1,
1

2
) = 1, 𝛴(1,1) =

1

2

Those got the truth table without taking into account the commutativity property (tab. 2).

If commutativity is taken into account, then we get Table 3.

3

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

Table 1. The obtained
set of solutions (we will
call the class of
solutions) has the
commutativity property

Table 2. The truth
table without taking into
account the
commutativity property.

Table 3. The truth table
with commutativity is
taken into account.

 0
1

2
 1

 0

1

2
 1

 0

1

2
 1

0 0
1

2
 1

0 0

1

2
 1

0 0

1

2
 1

1

2

1

2

1

2

 1

2

1

2
 1

 1

2

1

2
 1

1 1
1

2

1 1

1

2

1 1 1

1

2

The set of occupied cells in the table corresponds to those necessary conditions of

existence for the implementation of a given identity. And empty cells correspond to non-

essential conditions, which means that each free cell generates three possible options: 0,
1

2
, 1.

This makes it possible to establish the exact number of functions in the class of solutions

(power).

So, for this example, the following classes of solutions are possible:

1) Table 1 - the number of functions in the class of solutions is 9 (the property of

commutativity was revealed in the process of finding a solution and is not predetermined);
2) Table 2, the number of functions in the class of solutions is 9. If the commutativity

property is assumed to be given in advance, the number of functions in the class of solutions

will be 3 (Table 3).

Statement. Commutativity reduces the power of many feasible solutions.

This is due to the fact that the number of free cells in the truth table is reduced.

Theorem. There is an algorithm that determines the possibility of expressing a given

function in the form of a formula through the operations of generalized addition.

The proof of the theorem is based on the above algorithm for constructing the operation
of generalized addition. An algorithm is applied to the function specified in the table, and

then the results are intersected. If the resulting intersection set is not empty, then the decisive

function is representable as a formula through the operation of generalized addition. If it is

empty, then a given function cannot be represented with a single function, but you can select

the minimum number of functions that meet the specified requirements.

4 Algorithm for constructing a decision function based on the
generalized multiplication operation

When solving problems of constructive learning, there is a need to find functions that most

effectively implement the specified training samples.

Let the input of the system be fed a vector of values and each input

has the weight , the output of the system has the resulting offset y.

You need to build (set in a table) a set of functions that satisfy the condition:

, where is a function that can be represented through the operations of generalized

addition and generalized multiplication.

Let three-valued logic be given 𝐿 = ⟨𝐿, 𝑥, &,∨, ,→⟩,𝐿 = {0,1,2}.

4

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

Definition 2: Many functions 𝜋(𝑥, 𝑦): 𝜋(𝑥, 0) = 𝜋(0, 𝑥) = 0 we call the implementation

of generalized multiplication.

For given input values x and w and output y, we have a partially defined three-digit
function, which is defined on the set (x, w) by the value y.

For this, we first construct the admissible operations of generalized multiplication for

 in the form of a tree.

Consider . This quantity is unknown to us, but must take one of the values 𝐿 =
{0,1,2} (due to the closedness of the operation of generalized multiplication).

This implies the need to fulfill one of three conditions:

, , .

In this case, we obtain three possibilities for implementing the function Π∈π (i.e., three

tree branches).

At the next step, we consider the following relation and, taking into account the

previously formulated assumptions, each of the branches (2) will in turn split into three

branches.

Continuing to carry out the steps described above, we construct a tree of admissible values

of the truth tables of the operation of generalized multiplication.
 If at some step the assumption contradicts the earlier assumption regarding this variant

of the function Π, then such a branch is dead-end and it is discarded.

The last step is to consider , after which the process of finding generalized

multiplication ends.

The set of feasible solutions to Π is collected by lifting from the top leaves of the tree to

the root. As a result, we obtain a set of truth tables of the function of generalized

multiplication.

If the collection of the set π is empty, then for the functions ,
one cannot specify the operations of generalized addition and generalized multiplication so

that relation (1) holds.

Let , i=1,...,n, then each found operation Π∈π can be associated with a vector

. Those. (1) rewritten: .

And then, to determine the operation of generalized multiplication, we use the algorithm

of the representable function through the operations of generalized addition, proposed in the

previous section.

5 Conclusion

It can be argued that the logical functions obtained as a result of the proposed algorithms are

adequate solvers of the task and make it possible to identify hidden patterns in the data.

Acknowledgements

The reported study was funded by RFBR according to the research project №18-01-00050-a.

References

1. Flach P 2012 Machine Learning: The Art and Science of Algorithms that Make

Sense of Data (Cambridge University Press) p 396

2. Yablonsky S V 2008 Introduction to discrete mathematics p 384

5

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

3. Voroncov K V 2000 Zhurnal vychislitel'noj ma-tematiki i matematicheskoj fiziki

40(1) 166

4. Lyutikova L A, Shmatova E V 2020 Advances in Intelligent Systems and Computing

948 308

5. Shibzukhov Z M 2015 Doklady Mathematics 91(3) 391

6

E3S Web of Conferences 224, 01009 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401009

