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Abstract. An objective function arising in the optimization problem of a 
quasilinear complex system with dependent priorities is considered. In the 
case of three priorities based on the results of one experiment, sufficient 
conditions are obtained for all stationary points of the objective function 
under consideration to be local maximum points. 

1 Introduction 

In papers [1–3] the problem of optimization of interaction within the framework of a 

unified system of a number of institutions and an “optimizer” interested in the successful 

functioning of the system and acting on the basis of expert assessments was considered. 

Expert assessments should be implemented in the choice of priorities (generally random and 

taking values between zero and one) with different distributions. Under certain natural 

conditions, a theorem on the existence and uniqueness of the local (and global) maximum of 

the objective function of a certain complex system consisting of functions of a quasilinear 

type and independent random priorities was proved. These maxima are functions of a finite 

number of the positive parameters. In the present work, the problem of minimizing these 

maxima in the domain of the parameters` definition is solved. In particular, an exact solution 
of the minimax problem for constant priorities is given. The theorem was proved that if the 

function of maximum arising in the optimization problem of a quasilinear complex system 

with independent priorities has a stationary point with respect to natural parameters, then this 

point is a local minimum point. This point is unique. It implements minimax of the objective 

function of the arbiter, whose task is to optimize the relationship of a number of the 

institutions with help of the expert assessments. In practice, expert judgments should enable 

a design of the priority’s distribution functions. And the arbiter sets up the mathematical 

model of the described complex system using the components of the obtained minimax point 

[4-10]. In this work, we began to investigate the described model, when the priorities are 

dependent random variables. This task turned out to be much more difficult. In the case of 

three priorities based on the results of one experiment, sufficient conditions are obtained for 
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all stationary points of the objective function under consideration to be local maximum 

points.. 

2 Formulation of the problem 

Let  , ,F P  be a probability space. The mentioned problem of optimizing the 

relationship between the three institutions and the "arbiter" is based on the investigation of 

the maximum points of the objective function 

 31 2

1 2 3 1 2 3( , , )F u u u E u u u
 

, 1 2 30, 0, 0,u u u                                 (1) 

 
Fig. 1. All possible points of the local maximum of function (1) lie in the interior of the closed 
triangle. 

where 1 2 3, ,    are random variables (priorities) taking values on the interval (0,1) ; E  

is the expectation with respect to the probability P ; 3 1 1 2 2 3u c u c u c    , where 

1 2 3, ,c c c  are strictly positive parameters. Thus, all possible points of the local maximum of 

function (1) lie in the interior of the closed triangle shown in Figure 1. 

It is clear that 
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It is obvious that the function  

1 2 1 2 1 1 2 2 3( , ) : ( , , )F u u F u u c u c u c     (2) 

is continuous on D , continuously differentiable and strictly positive on 
0D , and is equal to 

zero on the frontier D  of this domain. It follows from the well-known theorem of analysis 

that this function has at least one local maximum point, which is simultaneously a global 

maximum point. This work is devoted to the study of stationary points of function (2), 

2

E3S Web of Conferences 224, 01014 (2020)
TPACEE-2020

https://doi.org/10.1051/e3sconf/202022401014



 
 

 

provided that the priorities 1 2 3, ,    are determined by one experiment associated with 

some uniformly distributed random variable  . So, we suppose that 1 1( )f   , 

2 2( )f   , 3 3( )f   , where 1 2 3, ,f f f  are Borel functions (0,1) , taking values on 

the same interval (0,1) . By the change of variable theorem under the Lebesgue integral, we 

obtain: 

31 2
1

( )( ) ( )

1 2 1 2 1 1 2 2 3
0

( , ) ( ) .
f xf x f xF u u u u c u c u c dx     (3) 

In this paper, a number of conditions on functions 1 2 3, ,f f f  are obtained under which all 

stationary points of function (3) are points of local maximum. 

3 Main results and their proofs 

Introduce the notation: 

31 2 ( )( ) ( )

1 2 1 2 1 1 2 2 3( , , ) ( ) .
f xf x f xu u x u u -c u - c u - c  

 

Then formula (3) takes the form: 

                        
1

1 2 1 2
0

( , ) ( , , ) .F u u u u x dx     

Introduce also the following notations: 

                        
1

1 2 1 2
0

( , ) ( ) ( , , ) ,  1,2,3,i iu u f x u u x dx i     

                          
1

1 2 1 2
0

( , ) ( ) ( ) ( , , ) ,  , 1,2,3, .ij i ju u f x f x u u x dx i j i j   
 

 

Lemma 1. A point 
0

1 2( , )u u D  is a stationary point of a function F  if and only if the 

following equalities hold: 

3
3 1 1

1

,u c u



 

3
3 2 2

2

.u c u




 

(4) 

Proof. The assertion of Lemma 1 follows immediately from the equalities: 

1
1 3

1 1 3

1
,

F c

u u u


 


 
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2
2 3

2 2 3

1
.

F c

u u u


 


 

 Let us calculate the partial derivatives of the second order of the function F . We have: 

2 2

1 1
11 1 13 33 32 2 2

1 1 1 3 3

1 2
( ) ( ),

F c c

u u u u u


    


    

 2 2

2 2
22 2 23 33 32 2 2

2 2 2 3 3

1 2
( ) ( ),

F c c

u u u u u


    


    

 

2

1 2 1 2
12 23 13 33 32

1 2 1 2 2 3 1 3 3

1
( ).

F c c c c

u u u u u u u u u


    

 
    

 

(5) 

Let 
0

1 2( , )u u D  be a stationary point of function F . Then equalities (4) hold. Substituting 

them in (5), we obtain: 

                   

2 2

1 13 1
1 11 3 332 2 2 2 2

1 1 1 3 1 30

1 2 1
( ) ( ),

F

u u u u

 
      

 

  
   

 
 

                

2 2

2 23 2
2 22 3 332 2 2 2 2

2 2 2 3 2 30

1 2 1
( ) ( ),

F

u u u u

 
      

 

  
   

 
 

                  

2

12 1 23 2 13 1 2
3 332

1 2 1 2 1 2 3 1 2 3 1 2 30

1 1 1
( ).

F

u u u u u u u u u u

 
     

  

    
 

  

 

 

Let us calculate at the stationary point the determinant 

2 2

2

1 1 20 02 2 2

1 2 3
2 2

2

1 2 20 0

   

.

  

F F

u u u
u u

F F

u u u

    
   
     

 
    
   
     


 

 

After a series of transformations, we get:  

           

     

2 2 2

1 11 2 22 3 1 11 3 33 2 2 22 3 33 1

1 11 2 3 23 2 22 1 3 13 3 33 1 2 12

1 2 13 23 2 3 12 13 1 3 12 23

2 2 2 2 2 2

1 23 2 13 3 12

2 2 2

2 2 2

.

         

     

  

  

              

              

           

     

 (6) 
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Lemma 2. A stationary point 
0

1 2( , )u u D
 
of function F  is a point of local maximum if 

in expression (6) 0.   Proof. Since for any i  and j   i ij  , it follows from (5) that 

at any point
0

1 2( , )u u D  the partial derivatives 

2

2

1

F

u




 and 

2

2

2

F

u




 are strictly negative. This 

implies the assertion of the lemma.  

In all further statements, the fulfillment of the inequality 0   will be verified, from 

which it follows that any stationary point of the function F  is a local maximum point. In 

this case, it will be taken into account that in formula (6) all terms in the first three rows are 

strictly positive, and in the fourth row are strictly negative.  

Proposition 1. Let us consider numbers  0 1, 1,2,3i ia a i    and let 

0,05min ia  . If i i ia f a     , then 0  . 

Proof. We will ensure the inequality 

1 2 3 1 2 32( )( )( ) ( )( )( ).a a a a a a           
 

(7) 

It is clear that for this it is sufficient to provide the inequalities 

0,1
0,9 , 1,2,3.

1,9

i i

i

a a
i

a







   


 

 

Obviously, this is true if we take 0,05min ia  . From (7) and the inequalities for if  it 

follows that the system of inequalities 

1 23 2 13 3 12

2 13 3 12 1 23

1 23 3 12 2 13

 


 
  

     

    

    

 (8) 

is satisfied and hence the system  

2 2

3 12 1 23 2 13 3 12

2 2

1 23 2 13 3 12 1 23

2 2

2 13 1 23 3 12 2 13

( )

( )

( ) .

  


 


 

       

       

       
 

(9) 

is satisfied too. It follows from (9) that  

2 2 2 2 2 2

1 2 13 23 2 3 12 13 1 3 12 23 1 23 2 13 3 122 2 2 .                        

Hence the expression (6) is strictly positive and Proposition 3 is proved. 

Corollary 1. If any , 1,2,3if i   are constant, then 0.   

Proposition 2. 1) If two functions of , 1,2,3if i   are constant, then 0.   

2) If one function of , 1,2,3,if i   is arbitrary and the other two coincide and do not 

exceed 0,5 , then 0.   
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Proof. Both points are proved by checking the fulfillment of inequalities (8) and further 

reasoning, as in Proposition 1. 

Proposition 3. Let 1 2 3

1 1 1
, ,

2 2 2
f f f   . Then 0.   

Proof. We have: 

2 2

1 13 3 2 13 12 3 2 3 12 13 3 12

1
2 2 2 .

2
f                  

 

2 2

2 12 1 12 3 1 23 1 3 12 23 1 23

1
2 2 2 .

2
f                  

 

2 2

3 23 2 1 23 2 13 1 2 13 23 2 13

1
2 2 2 .

2
f                    

The required result follows from (6). 

Proposition 4. Let one of the functions , 1,2,3,if i   be constant (for example, 3f c

) and either 1  
2(1 )

c
f

c



 or 2

2(1 )

c
f

c



. Then 0.    

Proof. It is easy to see that under the condition 3f c  the inequality  

  2 2 2 2 2 2

3 33 1 2 12 1 2 13 23 2 3 12 13 1 3 12 23 1 23 2 13 3 122 2 2 2 0                          
 

is equivalent to the inequality 1 2 12 .
2(1 )

c
F

c



    The conclusion of this proposition 

follows from the last inequality and formula (6).  

Corollary 2. Let one of the functions , 1,2,3if i   be constant (for example, 3f c ) 

and either 1

1
 

4
f   or 2

1
 .

4
f   Then 0.   

Proof. The assertion follows from the inequality 
1

,
4 2(1 )

c

c



 which is valid for any 

0 1.c    

Proposition 5. Let 1 2 3

1 1 1
, ,

2 2 2
f f f   . Then 0.   

Proof. Applying the inequalities in the formulation, we obtain 

1 2 1 2 2 1 1 22 2 11 1 2 1 22 2 11

1 1
0.

2 2
                        (10) 

By the Bunyakovsky-Schwartz inequality, we have 

2

11 22 12.    (11) 

Adding (10) and (11), we obtain: 
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2 2

1 2 1 22 2 11 11 22 12 1 11 2 22 12

2 2 2

1 11 2 22 3 12 3

( )( )

( )( ) .

           

      

        

   
  

The inequalities 
2 2 2

2 22 3 33 1 1 23( )( )          and 

2 2 2

1 11 3 33 2 2 13( )( )          are proved similarly. From (6) it follows that 0.   

Proposition 6. Let one of the functions , 1,2,3,if i   be constant (for example, 3f c

) and let there be a number 0 1   such that 1f    and 2 1 .f     Then 0.   

Proof. Since for 3f c  we have 
2 2 2 2

1 2 13 23 1 23 2 132 0          , then (as it 

follows from (6)) it suffices to prove the inequality 
2

1 11 2 22 12( )( ) 0.         We 

have: 

2

1 1 11 1 2 11 1 2

2
22 2 1 22 1 22 2

(1 ) (1 )(1 )

f f

f f

    
    

      

      

       
 

2 11 1 22 1 2 1 2 2 11 1 22 0                

2

1 2 2 11 1 22 11 22 12 0            
 

2

1 11 2 22 12( )( ) 0.          

Proposition 7. Let the inequalities 2 3 3 2,2 ;f f f f   3 1 1 3,2 ;f f f f   3 0,5f   be 

satisfied. Then 0.   

Proof.  

1) 
2 2

2 3 3 2 2 13 3 12 2 3 12 13 3 12, 2 2 2 .f f f f                

2) 
2 2

3 1 1 3 3 12 1 23 1 3 12 23 1 23,2 2 2 .f f f f                 

3) 
2 2

3 23 2 1 23 2 13 1 2 13 23 2 130,5 2 2 2 .f                    

Applying formula (6) we obtain the required inequality. 

4 Conclusion 

The authors are confident that the inequality 0   can be proved for arbitrary

, 1,2,3,if i   but so far this has not been possible. The next step in the investigation should 

be the solution of the minimax problem, as it was done in [2–3] with independent priorities. 
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