
Intellectualizing analysis and assessment of statistical data on 
field pipeline failures due to internal corrosion 

Denis P. Karmachev1,2,* 

1Tomsk Polytechnic University, 30, Lenina ave., Tomsk, 634050, Russia 
2TomskNIPIneft JSC, 72, Mira ave., Tomsk, 634027, Russia 

 Abstract. The paper presents some results of a study meant to create an expert system used to select a 

material design and method of internal corrosion protection for field pipelines at the design stage. The 

author has performed an intellectual analysis of operating statistical data on field pipeline failures. The first 

part of the paper describes the initial sample and the exploratory analysis performed. The second and the 

third parts describe the processes of creating and assessing a classifier based on the Random Forest 

algorithm. To assess the quality of the classifiers, the author has calculated the shares of correct answers in 

the algorithm (accuracy), precision and recall, as well as the F1-score. The author makes a conclusion about 

satisfactory values of quality metrics and outlines areas for further research. 

1 Introduction 
Oil and gas companies use field pipelines with various 

design specifications operated under the influence of 

various internal and external factors during oil and gas 

production, primary treatment and transportation. These 

internal and external factors directly influence the 

emergence and development of internal and external 

corrosion processes in some sections of field pipelines. 

This work is connected with the development of a 

software prototype for an expert decision-making 

support system (hereinafter referred to as the “System”) 

to be used to choose a material design and method of 

internal corrosion protection for field pipelines. The goal 

of this study is to conduct a sequential intellectual data 

analysis to create an example of predictive model that 

can be used as the main component of the System. 

2 Data mining of operational statistics 
Current work is concerned with statistical data on the 

failures and operating conditions of various field 

pipelines. The initial sample comprises 641 fields in the 

Russian Federation and contains 109,989 examples of 

field pipeline failures (data lines). These failures 

occurred in 2000-2019 at pipelines commissioned in 

1938-2018. This analysis is done in the Python software 

environment. 

2.1 Exploratory data analysis 

Basic information on the causes and nature of failures in 

the original sample is presented in table 1. Current work 

is carried out on failures due to internal corrosion. Most 

of failures were due to internal corrosion. Also the 

causes are unknown (NaN) for 14356 failures. These 

failures are also accepted in the current study as we can 

assume that most of these failures are due to internal 

corrosion. The training of the predictive model will be 

performed based on the causes of failures that have a 

different failure nature.  

The result of the predictive model will be the mean 

time between failures caused by internal corrosion. The 

feature "Nature of failure" cannot be considered in the 

model, since it is unknown until the moment of failure. 

Table 1. Causes and nature of the considered failures 

Column name Category Quantity 

Cause of failure  

 
Internal corrosion 67777 

External corrosion 22881 

NaN 14356 

Other – factory and 

construction defects, 

delamination, mechanical 

damage 

4975 

Nature of failure 

(cracks, holes, 

breaks, loss of 

tightness) 

Body 80527 

NaN 19398 

Other 6257 

Welded joint 3807 

A preliminary assessment used to involve or reject 

specific features is based on the following rules: 

� The feature is specific at the design stage and known 

before actual failure occurs. 

� The feature characterizes the operating reliability of 

the inner wall of a test target (field pipeline section). 

� The feature characterizes the internal operating 

factors of the test target: hydrodynamic parameters, 

physical and chemical properties of pumped media. 

For comparison, the author presents information on 

some features not involved in the analysis: 

E3S Web of Conferences 225, 06002 (2021)
Corrosion in the Oil & Gas Industry 2020

https://doi.org/10.1051/e3sconf/202122506002

*
 Corresponding author: karmachevd@gmail.com 

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 



� “Failure coordinate,” “Manufacturing plant,” 

“Construction contractor”, as these features are unknown 

at the design stage. 

� Organizational and economic data, as these features 

are not connected with operating reliability. 

 It should be noted that failures caused by factors not 

connected with field pipeline inner wall reliability are 

excluded from the initial table. At the same time, the 

study comprises the following features: “Type of outer 

coating,” “Type of heat insulation coating,” “Laying 

method,” “Type of soil,” and “Laying depth.” These 

features influence the temperature of pumped media and, 

consequently, lead to the emergence and development of 

corrosion processes [1]. 

 The preliminary analysis restores the values of 

features that can be determined definitely or with some 

assumptions, for example: 

� Water content (in percentage) and zero values of oil 

flow rate for water and gas pipelines meant to transport 

dry gas 

� Zero values of gas flow rate for pipelines pumping 

gas-free oil or water. 

Mean time to failure [2] for each unique field 

pipeline section is taken as a target value. 

The initial sample comprises more detailed 

information on the physical and chemical properties of 

pumped media: Ca2+ ��� ����	� 
��
���� ��2 in water 


��
���������������2 (mg/l), H2S in water and oil (mg/l), 

Mg2+ in water (mg/l), suspended particles (mg/l), total 

dissolved solids (mg/l), etc. At the same time, 

involvement of all these features leads to a reduction in 

the sample size to 2,143 examples of failures, provided 

data lines with missing values are excluded. Therefore, 

practically all physical and chemical properties of 

pumped media are denoted through the “Group of 

corrosion contour (GCC)” feature. This feature takes 

values from 1 to 4 and testifies to the overall level of 

medium aggressiveness. 

The importance of features (Fig. 1) is assessed using 

the Random Forest (RF) algorithm [3]. Category features 

are coded with a numerical method using the 

LabelEncoder function [4]. To check the adequacy of 

this approach, importance is assessed for standardized 

[4] and initial continuous features. At the same time, 

both resulting importance diagrams are practically 

identical (the deviations of the importance of each 

feature do not exceed 1%). 

The diagram (Fig. 1) shows the features that are the 

initial data for the model. To predict the MTBF using the 

System, the user must enter the values of these attributes 

and additionally indicate the year of putting the pipeline 

section into operation. 

The importance diagram shows adequate results: 

� Input and output pressure of a field pipeline section 

(P_in, P_out), as well as the flow rate of gas and oil 

phases (F_gas, F_oil) are among 5 most significant 

features. 

� Section length is also highly important, as, in general, 

the probability of a failure in the longest section is higher 

vs. that in a short section. 

� Water content and temperature of pumped media are 

also highly important, as they directly influence the 

emergence and development of corrosion processes on a 

field pipeline inner wall. 

� The importance of outer and heat insulation coatings 

exceeds the importance of inner coating, since over 90% 

of the pipelines under consideration do not have inner 

coating, while over 50% of the field pipelines in 

operation use outer and heat insulation coatings. 

� The standardized value of operating pressure (P_op) 

provides additional support, as one should not be 

confident in the truth of averaged input and output 

pressure values. 

� The influence of chemization parameters is 

insignificant due to the fact that about 90% of the field 

pipeline sections are not exposed to inhibiting. 

 

Fig. 1. Feature Importance Diagram. 

With the exclusion of any features, the general 

dynamics of the distribution of importance is unchanged. 

Therefore, this diagram can also be fully considered to 

determine the significance of operating factors. 

2.2 Model creation and history matching 

The prepared sample contains 19623 examples of 

failures (rows) and 28 features (columns). At this stage, 

categorical features are coded with a binary method 

(one-hot encoding) [4], since numerical coding may lead 

to incorrect interpretation of category features by the 

model, which will ultimately affect the quality of the 

classifier performance. 

The implementation of the predictive classifier is 

based on the RF algorithm that is easy to use, has good 

accuracy and is also widely used in other research 

studies [5]. The Gini index is used as a dispersion 

criterion [6]. 

The best model parameters are searched using the 

RandomizedSearchCV and GridSearchCV functions [4]. 
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The configuration parameter diagrams are shown in 

figure 2. 

 

Fig. 2. Diagrams of classifier settings. 

2.3 Classifier assessment 

For quality assessment, the prepared data frame is 

divided into training and test sets with a ratio of 80% to 

20%, respectively. The total number of examples of 

failures (19623) allows us to define this strategy. 

As metrics for assessing the quality of classifier, the 

shares of correct answers of the algorithm (accuracy), 

precision and recall, as well as the F1-score [7] were 

determined. The values of the metrics are presented in 

table 1. 

Table 1. Quality classifier metrics (interval classes) 

Class Precision Recall F1-score 

1…4 years 0.88 0.86 0.87 

5…7 years 0.86 0.84 0.85 

7…8 years 0.84 0.89 0.86 

9…10 years 0.84 0.86 0.85 

11…12 years 0.86 0.86 0.86 

13…14 years 0.89 0.84 0.87 

15…16 years 0.88 0.84 0.86 

17…19 years 0.81 0.88 0.84 

20…22 years 0.85 0.87 0.86 

23…25 years 0.85 0.85 0.85 

26…28 years 0.91 0.89 0.90 

29… years 0.94 0.91 0.92 

 
accuracy 0.87 

macro avg. 0.87 0.86 0.87 

weighted avg. 0.87 0.87 0.87 

The transition from interval classes to detailed 

classes is more convenient for perception and operation 

in the System, but the metrics indicators are lowered. 

Information is provided in table 2. 

Table 2. Quality classifier metrics (detailed classes) 

Class Precision Recall F1-score 

1 year 0.89 0.74 0.81 

2 years 0.82 0.86 0.84 

3 years 0.87 0.78 0.82 

4 years 0.81 0.82 0.81 

5 years 0.84 0.83 0.84 

6 years 0.81 0.83 0.82 

7 years 0.82 0.78 0.80 

8 years 0.75 0.87 0.81 

9 years 0.82 0.82 0.82 

10 years 0.77 0.81 0.79 

11 years 0.73 0.80 0.76 

12 years 0.88 0.88 0.88 

13 years 0.85 0.85 0.85 

14 years 0.83 0.79 0.81 

15 years 0.81 0.82 0.81 

16 years 0.77 0.78 0.77 

17 years 0.81 0.78 0.80 

18 years 0.78 0.81 0.79 

19 years 0.80 0.78 0.79 

20 years 0.88 0.87 0.88 

21 years 0.72 0.81 0.76 

22 years 0.87 0.79 0.83 

23 years 0.87 0.84 0.86 

24 years 0.86 0.84 0.85 

25 years 0.82 0.86 0.84 

26 years 0.91 0.86 0.88 

27 years 0.86 0.79 0.82 

28 years 0.90 0.90 0.90 

29 years 0.79 0.82 0.80 

30 years 0.91 0.83 0.87 

31 years 0.95 0.78 0.85 

32 years 0.85 0.79 0.81 

 
accuracy 0.82 

macro avg.  0.83 0.82 0.82 

weighted avg. 0.83 0.82 0.82 

A confusion matrix (Fig. 3) is built for a detailed 

assessment of model performance quality (vs. interval 

classes). The confusion matrix shows large (over 10), 

medium-sized (from 5 to 10) and insignificant (under 5) 

groups of classification errors. The overwhelming 

majority (14 out of 16) of the large groups of errors falls 

at adjacent classes, testifies to the similarity of the 

features of these failures and, consequently, to the 

similarity of the features of the field pipeline sections 

under study. A similar conclusion is relevant to the two 

other large groups of failures falling at close but not 

adjacent classes: 9...10 and 13...14; 17...18 and 23...25. It 

should be noted that combining some adjacent and 

closest classes will almost completely eliminate the 

erroneous answers of the classifier. 
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Fig. 3. Confusion matrix (interval classes). 

3 Summary 
The intellectual analysis of statistical data has allowed 

developing a classifier meant to determine a mean time 

to failure for designed field pipeline sections based on 

historical operating data. Its satisfactory results are 

confirmed with the calculated quality assessment 

metrics. The confusion matrix indicates the similarity of 

features in adjacent and close classes. This problem may 

consist in the fact that over 80% of the data were 

excluded from the initial sample, as they contained 

missing values that could not be unambiguously 

identified and restored. Therefore, further research in 

this area will primarily be focused on the restoration of 

missing values. Also, a comparative analysis of other 

nonlinear classification algorithms will be performed in 

addition. It should be noted that the good classifier 

quality metrics show that the current model can already 

be applied to the System software prototype being 

developed now. Besides, the current results can be 

applied in relation to the sections of field pipelines 

currently in operation to optimize reconstruction and 

modernization schedules. 
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