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Abstract. The problem is analyzed of hydrate formation in the systems of 

gathering and treating of oil and gas products. The methods are studied for 

prevention of complications associated with the gas hydrates accumulation 

in the pipelines and process lines. Attention is focused on the significant 

material costs to prevent the hydrate formation and ways to reduce them. 

The necessity of constant laboratory monitoring for reservoir systems at 

industrial facilities to determine the hydrate formation parameters has been 

substantiated. The need to improve the method for determining the hydrate 

formation parameters for complex reservoir systems based on a mixture of 

hydrate-forming gases has also been proved. The purpose of the work is to 

improve the research method of reservoir systems immediately at the 

facilities of products mining and treatment. The peculiarities are analyzed 

of the method of visual laboratory observation in the study of gas hydrates. 

During experimental studies, optical effects of image distortion are 

observed due to the formation of a gas hydrate layer in the form of a film 

on the interphase surface. The mechanism of their formation, as well as the 

processes determining them have been substantiated. Based on this effect, 

a method of fixing the hydrate formation initial stage (beginning of crystal 

growth – mass crystallization) is proposed. For increasing the informative 

ability of the obtained images of hydrate formation processes, it is 

proposed to “paint” them with the help of colored light sources, as well as 

to regulate the intensity and direction of illumination. A number of photos 

are presented, which clearly illustrate the processes described in the paper. 

1 Introduction 
The unique ability of gases and water under certain thermobaric conditions to form gas 

hydrates, on the one hand, led to the formation of colossal methane deposits in its 
composition [1-3], and, on the other hand, created a significant problem for the oil and gas 

industry. Analysis of the technological operations assignment, as well as corresponding 

equipment of the technological chain of recovery, treatment and transportation of natural 
gas and oil (associated gas) evidences that a significant part of them (directly or indirectly) 

relates to the preventing hydrate formation [4-6]. Therefore, the cost of preventing hydrate 
formation is a significant part of the hydrocarbon production cost. 
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Gas hydrates are formed at high pressures and low temperatures [7, 8]. Gas hydrates can 
be formed inside pipeline under certain pressure and temperature conditions, slowing or 
completely stopping the flow of oil and gas. It is generally difficult to remove hydrate 

plugs, and this can cause considerable damage to production facilities, such as line rupture 
and create a serious safety and environmental hazard.

A complex of techniques to prevent hydrate formation is used in the process of 

developing hydrocarbon deposits. At the same time, in most cases it is impossible to 
achieve their hydrate-free operation mode only observing the appropriate thermobaric 

conditions. In this case, it becomes necessary to use substances – inhibitors of this process. 

Although methanol is currently the most widely used inhibitor of hydrate formation in 
Ukraine, a number of its “competitors” are known. Each of the process inhibitors, due to its 

specificity and the specificity of the application object requires a careful assessment of the 
effectiveness and application rate. An enormous expense for hydrate prevention and 
mitigation is associated with the use of traditional thermodynamic hydrate inhibitors 

(THIs), such as methanol and mono-ethylene glycol (MEG) [9]. Thermodynamic hydrate 
inhibitors (methanol, ethylene glycol) are generally used in Ukraine to avoid gas hydrate 

problems in the line of natural gas production and transportation.
However, despite the achievements in the study of the gas hydrates properties, 

significant practical experience in their prevention, scientific innovations and technical 

improvements, the problems of combating such complications remains relevant [10]. In 
such a context, safe and economical hydrate management strategies have become an urgent 
need for safe and reliable production of oil and gas [11]. An additional option may be to 

develop the techniques for detecting early signs of hydrate formation in order to give 

operators sufficient time to take proper action for preventing blockage formation.

The past years has witnessed new technologies for providing the required information 
for the field operators to understand how close the gas hydrate system is 
thermodynamically to hydrate formation conditions, termed as gas hydrate early warning 

and monitoring systems. In order to optimize gas hydrate inhibitor injection, numerous 
different analytical techniques are used. Various advanced analytical techniques also have 

been used to identify gas hydrate structures and respective interactions at the boundary of 
aqueous – vapor interphase.

Besides, the study of gas hydrate formation and dissociation has great importance in the 

oil and gas industry to define operational conditions that ensure the flow of oil and gas 
through pipelines [12]. For example, the Centre for Gas Hydrate Research at Heriot-Watt 
University has proposed new techniques for detecting early signs of hydrate formation in 

order to give operators sufficient time to take appropriate measures [13]. In the work [14], 

one of these early warning techniques is presented. This technique is based on a change in 

the composition of the gas phase caused by hydrate formation.
It is well known that due to the formation of hydrates and the corresponding selective 

capture of natural gas components in hydration cells, the composition of the gas phase 

changes [15]. Based on the measurement of the sound velocity and thermal conductivity,
the device measures equivalent concentration of gas mixture components [14]. Based on 
this property, an experimental technique has been developed to identify early signs of 

hydrate crystals formation by determining the gas composition [16].
Yang et al. [17] have developed a reliable and fast technique for measuring the 

concentration of salts, thermodynamic and kinetic hydrate inhibitors in the aqueous phase 
based on integrated data collection on electrical conductivity and acoustic velocity of 
aqueous phase chemical composition that leads to the determination of hydrocarbon fluid 

composition and, accordingly, hydrate stability zone recognition.

Tohidi et al. [16] also proposed a method for determining the stability margin of hydrate 
zone based on water content measurement in the gas phase.

E3S Web of Conferences 230, 0100 (2021)

Gas Hydrate Technologies: Global Trends, Challenges and Horizons - 2020
3 https://doi.org/10.1051/e3sconf/202123001003

 

2



Additionally, Tohidi et al. [18] have proposed some techniques, such as as hydrates
monitoring and warning systems, which are based on freezing point and dielectric 
properties measurements. They used the freezing point decrease of the aqueous phase to 

estimate the hydrate recovery temperature of reservoir fluids in the presence of salts and 
inhibitors using a simple equation.

At the same time, the complex of gas hydrates properties, the diverse composition of 

reservoir systems, a wide range of thermobaric parameters and their variability will not 
allow to obtain an acceptable result when applying most of the known methods. Therefore, 

the improvement of the technique for operational predicting of hydrate formation in the 

systems of gathering and treatment of industrial products, as well as the schematic diagram 
of the equipment for its implementation is relevant.

2 Situation analysis and purpose setting
For the natural gas hydrates formation, in addition to the appropriate temperature and 
pressure, the presence of moisture in the condensed phase is necessary. In the wellbore, this 

requirement is always met, since the gas is always saturated with water vapor in reservoir 
conditions. When moving along the wellbore and further along the gathering and treatment 

system, the gas temperature decreases, resulting in moisture condensation.

As known, the system composition influences on the equilibrium conditions. Hydrate 
crystalline structures are composed of water molecules linked by hydrogen bonds that form 
a lattice. The size of the guest molecule determines the type of structure to be formed. The 

composition of the gas mixture can influence on the thermodynamic hydrate equilibrium. It 
is known that the hydrates formation is characterized by two distinct stages, such as 

nucleation and growth [19]. After this, the gas hydrates agglomeration begins (the stage of 
phase transition, after which the hydrate plugs formation occurs) [20]. Also, the
composition of the gas phase affects the gas hydrates morphology and crystal growth [21].

Besides, the rate of nucleation strongly depends on the thermal history of the system 
[22]. According to Bishnoi et al. [23], the induction time for nuclei formation depends on
the aqueous phase history. This property and the results of it manifestation are called the 

memory of water. Hydrate memory can be described as the effect in which hydrates can be

more easily formed from a mixture of gas and water, resulting from the hydrates 

dissociation, compared to the case where hydrate is formed for the first time from a mixture 
of water and gas without any previous hydrate history. This effect suggests that hydrate 
formation can be promoted by multiple dissociation and reformation processes [24].

The studies relate this memory to a residual structure (consisting of particles of hydrate 
cells or polyhedral clusters) [21] or persistent hydrate crystallites [25]. They concluded that 
this local change in water structure due to the presence of hydrate crystallites could be 

responsible for memory effect. In other words, persistent hydrate crystallites in dissociated 
hydrate water lead to a locally modified water structure, which, in turn, facilitates hydrate 

transformation [25]. Sloan et al. [26] reported residual structures after hydrate dissociation 
by measuring the apparent viscosity (using a sapphire rolling-ball viscometer) during 
hydrate formation and dissociation. Based on this observation, they recommended 

immediate removing of dissociated hydrate water from pipeline for preventing rapid 

repeated formation of hydrates.

Thus, in addition to pressure and temperature, the history of water, the degree of 
supersaturation or supercooling [27], the stirring rate [28], and the ratio of molecular 
diameter to cavity size [29] are variables that affect the induction time.

Thermodynamic models (for example, described in the work [30]) are usually used to 

calculate the hydrate safety margin based on the worst conditions. Based on the 
calculations, the inhibitors are injected. However, as shown above, there is a difficulty in 
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qualitative assessment of all reservoir system components and the results of their 
interaction. In work [31], the simulation results demonstrated that the data on hydrate 
composition obtained from direct measurement (microscopic tools) are well assessed by the 

thermodynamic model. However, when structural transition can occur in a system, the 
thermodynamic model is no longer accurate. Consequently, in order to create a guaranteed 

and certainly sufficient anti-hydrate strength margin of the system, the application rate of 

the inhibitor is significantly increased. As a result, this approach leads to a systematic 
overuse of the reagent (and hence financial costs), but, as practice shows, does not 

eliminate the threat of hydrate plugs formation. In addition, such a large strength margin

can have a significant impact on the environment.
This problem is solved by obtaining reliable (and most accurate) data as a result of 

corresponding measurements and laboratory tests directly at the production site. Today,
modern equipment is used for laboratory study of gas hydrate properties. A significant 
number of effective techniques have been developed. The most commonly used apparatus 

include autoclave, a vibrating cell, stirred reactor, batch or semi-batch crystallizer,
automated lag time unit (HPALTA), (micro) differential scanning calorimetry (DSC or 

μ-DSC), pipe wheel, and flow loop. The selection of a proper experimental setup largely 
depends on the purpose and perspective of research. Different flow loops with a variety of 

dimensions and operating conditions have been widely used to study the nature of hydrate 

plugging, depositing mechanisms and induced flow patterns under variable flow velocities
and water cuts [32, 33] for water dissolved in a liquid condensate system [34] and 
multiphase systems [35] with/out inhibitors [36] with/out emulsion systems [37].

It is evident that the research method and design features of the involved laboratory 

equipment depend on the purpose of its implementation, the required level of the studied 

parameter accuracy and the available budget (financial capacity or economic feasibility). 
Any research to control production processes must be as reliable as possible, integrated into 
the process and conducted systematically (continuously). On the other hand, laboratory 

research, like any other business activity, has its cost. It consists of the cost of equipment 
and the cost of performing (conducting) research. In turn, the cost of laboratory equipment 

and research, as well as the level of their reliability, depend on the method used.
The extracted products of gas, gas condensate and oil wells are a complex multi -

component mixture of hydrocarbons and non-hydrocarbons (including water vapor, 

condensed water with different levels of mineralization and composition, technological 
fluids, dispersed solid rock fraction and drilling fluid) components of natural and 
technogenic origin, the composition of which and parameters vary depending on the field, 

the stage of development and the stage of the technological process of preparation.

As shown above, gas hydrates are non-stoichiometric compounds, the composition, 

morphology and level of stability of which depend not only on thermobaric parameters, but 
also on a number of other additional factors. These include the effect of self-preservation, 
the manifestation of water memory, influence of soluble and insoluble impurities of the 

reservoir system, as well as technological fluids, etc. on the direction and speed of the 
process (catalyze or inhibition). Therefore, in the technological cycle of hydrocarbon 
production, it is difficult and sometimes impossible to predict and assess their impact, as 

well as take into account and respond to them.
Against the background of reducing the energy prices at Ukrainian enterprises, it is 

extremely important to minimize the operating costs of hydrocarbon production. At the 
same time, the purchase of inhibitors for hydrate formation and the measures related to 
prevention of the hydrate plugs formation are significant expenditure items. Significant 

savings can be achieved based on the most accurate and operational data on the zones of 

possible hydrate formation and the application rate of inhibitors. Thus, based on the above, 
the urgent task is to further improve the regular and operational laboratory studies of real 
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reservoir systems immediately at the facilities of products mining and treatment. In 
addition, the equipment and techniques used for this should be as efficient, reliable and 
inexpensive as possible.

3 Method for determining the starting moment of mass gas 
hydrate crystallization
The hydrate formation process is exothermic and is fixed in a closed volume by the 
pressure drop. Extremely sensitive (but at the same time quite complex and expensive) 

equipment is used to control the change of thermobaric parameters during this phase 
transition. The initial stage of the process is nucleation (the stage of gas dissolving in the 
liquid is irrelevant for reservoir systems).

Determining in the laboratory conditions of the beginning of hydrate formation by 

known methods (by temperature jump, pressure drop or increase in resistance), even with 
the use of supersensitive equipment, in our opinion, mainly concern the period of mass gas 

hydrate crystallization (this is especially true for studying the complex reservoir systems 
directly in the process their extraction). That is, the moment when the water molecules (or 

their part) are appropriately structured and the system has already accumulated a certain 
(quite significant) amount of gas hydrate nuclei. Moreover, in the case of real reservoir
systems, as a result of the fractionation effect, the formed microcrystals will be beneficiated

with heavier gas components. Over time, within a closed system, the difference in the 
composition of gas from the original one, and, hence, the error will increase. Thus, in our 

opinion, the methods of hydrate formation parameters control and appropriate equipment,

acceptable for widespread use in industrial facilities of Ukraine, do not allow to record the 
stage of beginning the hydrate crystals growth around its nuclei and even the start moment 

of their mass crystallization. The question of how this affects the quality of the information 

obtained and ways to use it will be left open.
At the same time, information about the earlier stages of the process (nucleation, or at 

least the beginning of mass crystallization) will definitely be more important for operative 
response. It is known that the process of gas hydrate formation is the most intense at the 

interphase (gas and water) boundary. The process at the interphase boundary (liquid

surface, droplets and bubbles in the laboratory reactor or process equipment) is manifested 
in the formation of a thin hydrate layer in the form of a film. Visually, this process is fixed 

by the transformation of the mirror-like surface of the interphase boundary to matte one.
The dynamics of this process is illustrated in Figs. 1 and 2.

Fig. 1.Mirror-like interphase surface of hydrate-forming gas bubbles in water (gas hydrate film is absent).

This effect of the interphase boundary distortion is explained by the formation, growth, 
chaotic accumulation and localization at this boundary (through to the intermediate density 

between water and gas) of hydrate microcrystal of different shapes and sizes.
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Fig. 2.Matte interphase surface of hydrate-forming gas bubbles in water (gas hydrate film is formed).

At the same time deviations of thermobaric parameters at this stage are practically not 

fixed. Thus, according to this method, the earlier stages of the hydrate formation process can 
be recorded. However, even under such conditions, it is quite difficult as clearly as possible 

(unambiguously) to record the moment of “turbidity” of the interphase surface.
However, in the process of processing the obtained visual information of the hydrate 

formation dynamics on the interphase surface, the following is found: when turning on the 
additional light sources placed around the perimeter of the digital microscope lens, the 
images of droplets and bubbles recorded on photo and video were distorted by reflection of 

these light sources (Fig. 3).

Fig. 3. Defects on the images of gas bubbles in water, formed as a result of reflection on their surface 

of point light sources.

However, when analyzing the whole dynamics of the phase transformation process in 
these images, it has been revealed that simultaneously with the interphase surface turbidity,
there is a significant distortion of the spots of the light source reflection. Moreover, the 

beginning of its distortion was recorded much earlier than it was possible to visually notice 

the turbidity of the bubble or drop surface. This process is illustrated in Fig. 4.

As can be seen in the photo (Fig. 4b and 4c), there are practically no other visual 
signs of the hydrate formation process, except for the distortion of the light reflection of 
the diodes. Thus, this optical effect makes it possible to extremely sensitively (with high 

accuracy) record the changes occurring at the microlevel with a mirror-like interphase 
“gas – liquid” surface. In our case, it allows to record the initial stage of the crystals 

growth process of gas hydrate. Thus, the optical effect of image distortion is proposed to 
be used as basis for the method for determining the start moment of hydrate formation 
(the stage of beginning of the crystals nuclei growth) for complex reservoir systems in 

industrial production.
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(a) (b)

(c) (d)

Fig. 4. Dynamics of distortion of point light sources reflections on the images of gas bubbles in water 

as a result of the gas hydrate film formation on the interphase surface.

4 Laboratory research peculiarities and results
The method of visual observations is the simplest, but at the same time extremely 
informative. Quite often it is used in the study of gas hydrates. In the work [38], the 

behavior of clathrate hydrates during crystals growth is studied using an optical cell under 

pressure. The study described in the work [39] was one of the first to develop a method for 
quantitative measurement of film thickness using microscopy. In 2001, Freer et al. used 

optical microscopy as a tool to determine the rate of growing the methane hydrate film
depending on the bulk temperature [40]. In addition, the authors of works [41-49] and many 

others used in their research the method of visual monitoring for the processes in the 

systems with gas hydrates.
In this work, in the process of developing the research methods, attention was focused 

on capturing and analyzing photo and video images of the gas hydrates formation in multi-
component gas mixtures (natural gas) in contact with aqueous solutions of ionic and 

nonionic substances (e.g. reservoir water, sea water, reservoir and sea water in a mixture 

with hydrate formation inhibitors). The studies are performed on laboratory equipment 
shown in Fig. 5.

The optimal level of image magnification, which would be the most informative and 

technically acceptable for implementation in laboratory equipment, has been analyzed in 
the process of research. In this case, the presence of a transparent layer of glass in the 

viewing window of the reactor (16 mm thick) between the tested sample in the reactor and 
the microscope lens is a technical problem. That is, the restriction relates to the minimum 
focal length, and hence the magnification factor of the resulting image. On the other hand, 

during the laboratory testing of the method, it has been determined that a significant image 
magnification (more than by 150-200 times) complicates the search for an informative 
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object of study (behind the glass of viewing window of the reactor of relatively large area, 
especially in the case of mixing its content or bubbling) and assessment of the overall 
picture of the process.

(a) (b)

Fig. 5. Laboratory equipment: (a) appearance; (b) research process.

In addition, the main studied objects, such as water, aqueous solutions, inhibitors, gas 

hydrate and ice, are mostly colorless and transparent. The lack of objects coloring and its certain
elements significantly complicates the obtaining of informative images of hydrate formation 
processes. The idea of adding color dyes to the reactor is unacceptable, because they can affect 

the process and thus distort the information. In this regard, the “painting” of the reactor content 
by illuminating it with light sources of different colors is used. Moreover, to achieve the most 
positive result in the “manifestation” of the interphase boundaries, the possibility of selecting the 

optimal color spectrum, direction and intensity of lighting (Figs. 6 and 7) is provided.

(a) (b)

(c) (d)

Fig. 6. Options for selecting the light (color) spectrum of hydrate film on the water surface

(magnification by 100 times).
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(a) (b)

Fig. 7. Option of “painting” the processes in the reactor (without magnification).

Thus, the proposed method consists in determining the parameters of the hydrate 
formation beginning on the basis of fixing the optical effect of the light source reflection 

distortion on the mirror-like “liquid-gas” interphase surface.

5 Conclusions
The hydrate formation process at the interphase boundary is manifested by the formation of 
hydrate thin layer in the form of a film. Visually, this process is fixed by the transformation 

of the mirror-like surface of the phases boundary to matte one. This effect of the interphase
boundary distortion is explained by the formation, growth, chaotic accumulation and 

localization at this boundary of hydrate microcrystals of different shapes and sizes.
Simultaneously with the process of interphase surface turbidity, there is a significant 
distortion of the light source reflection spots. This optical effect makes it possible to 

extremely sensitively (with high accuracy) record the changes occurring at the microlevel 
with a mirror-like interphase “gas-liquid” surface. Thus, the proposed method is in 
determining the parameters of beginning the hydrate formation based on the fixation of the 

optical effect of the light source reflection distortion on the mirror-like “liquid-gas”

interphase surface.
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