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Abstract. Gas hydrate is a new clean energy resource with polar 

molecule. However due to the change of temperature and pressure during 

extraction process, there will be secondary formation of gas hydrate, which 

usually occurs in reservoirs or pipelines near the wellhead. It is 

significance to prevent secondary formation of hydrate because of safety 

issues or production rate reduction caused by it. Theoretically, microwave 

heating can accelerate the decomposition of gas hydrate. Therefore, it is 

possible to use microwave radiation to prevent secondary formation of 

hydrate. In this paper, a microwave antenna with special shaped coaxial-

slots was designed. Based on electromagnetics and antenna transmission 

theories, the key parameters of the coaxial-slot antenna were calculated. 

The frequency is 2.45 GHz, the impedance is 50 ohms, and ratio of outer to 

inner conductor radius is 3.32. The slots were designed as ‘H’-shape with 

the width is 2 mm, the radial length is 12mm, the axial length is 14 mm 

and the interval is 35 mm. Teflon was used as filling material and the 

radome. Then the software HFSS and ANSYS were used to analyze the 

electromagnetic field and temperature field to further optimize the 

parameters. It will be proved that the microwave antenna can heat gas 

hydrate and prevent the secondary formation. 

1 Introduction 
Natural gas hydrate is a non-stoichiometric crystalline solid, which is formed by water and 

small molecular gases (such as H2, CH4, H2S, etc.) under low temperature and high-
pressure conditions [1]. At present, depressurization is one of the commonly used methods 

for producing natural gas hydrate. Studies have shown that in the early (late) stages of gas 
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hydrate decomposition by depressurization, heat transfer and kinetics are the control 
mechanisms for hydrate decomposition. In the later stage, the heat supply will be 
insufficient due to the large amount of decomposition and heat absorption of the hydrate in 

the early stage. Because of the Joule-Thomson effect, there will be secondary formation of 
gas hydrate in the gas production channels, wellbores, blowout preventers (BOP), and other 

parts under low temperature and high-pressure conditions. Severe blockage will affect the 

rate of gas migration or even block gas production channels, causing the risk of reducing 
gas production rate or even production shutdown [2-7]. In order to eliminate or suppress the 

secondary hydrate plug in the depressurization process, the supply of heat can restore the

gas production efficiency theoretically. The traditional heating method has a slow heating 
rate and large heat loss. In contrast, the electromagnetic heating method can quickly heat as 

needed, and it has demonstrated its effectiveness in heavy oil [8-19].
Electromagnetic heating can be divided into high frequency (microwave, radio 

frequency) heating, medium frequency induction heating, and low frequency resistance 

heating according to different frequencies. Microwaves are ultra-high frequency 
electromagnetic waves with frequencies between 300 to 300000 MHz. The microwave 

frequencies between 2450 and 915 MHz are commonly used for heating in the industry. 
Because microwaves will be absorbed when interacting with some polar substances or 

molecules to produce thermal effects, microwave heating is widely used in food, industry, 

agriculture, medical treatment, and the exploitation of unconventional oil and gas resources 
(oil shale, heavy oil, and oil sands) [20-23].

Natural gas hydrate is a kind of polar molecule. In theory, its molecular motion is 

disturbed and blocked under the changing electromagnetic field, which will produce an 

effect similar to friction. And a part of the microwave energy is converted into the energy 

of the chaotic thermal movement to intensify the movement of the polar molecules, thereby 
increasing the temperature and solving the problem of insufficient heat supply in the later 
stage of depressurization [24-27]. Moreover, microwave heating is a kind of body heating, 

which does not depend on the power system. It means that the temperature can be increased 
in a short time so that the energy conversion rate is high and the heat loss is small. In this 

case, the thermodynamic power required for the decomposition of hydrates can be
provided, which is beneficial to inhibit the secondary formation of hydrates or promote the 

decomposition of secondary hydrates, and ultimately improve productivity [28-31].

In the application of microwave heating, the microwave energy generated by the 
microwave generator is conducted to heat the object through the microwave transmission line. 
In actual high-power transmission applications, coaxial lines or waveguides are often used as 

microwave transmission lines, and antenna as a kind of transmission media has the function

of radiating microwave energy in a certain direction [22]. At present, the researchers are 

mainly focused on heating mechanism of heavy oil and gas hydrate by microwave antenna.
On the contrary, there are few studies related to the structure design of the antenna for 
microwave heating of hydrate. For instance, in the case study reported by Kasevich et al. [32], 

they used antenna to heat a small sample of heavy oil. A microwave antenna with a special 
protective cover was designed by Matteo et al. [33], which was used to heat the heavy oil. 
Possibility and capability of gas pipelines used as microwave transmission waveguides was 

studied and calculated by Wang Yulong [34] and Meng Xiaofeng et al. [35].
The antenna design for heating hydrate is different from that for heating heavy oil 

because of the different conditions in the process. In this paper, a microwave antenna with 
coaxial slots suitable for the frequency of 2.45 GHz is designed to prevent the secondary 
formation of hydrate. The antenna can transmit the high-power microwave energy to the 

place where the secondary hydrate is easy to form, and radiate microwaves energy in a 

certain range to heat the secondary hydrate. In addition, it can ensure the normal operation 
of the antenna while irradiating high microwave power under the conditions of low 
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temperature and high pressure. Through the numerical simulation of the HFSS software, the 
electromagnetic field and temperature field of the secondary gas hydrates was analyzed.
The dimension of antenna was optimally designed, which provides a theoretical basis for 

the removal of secondary hydrates during the exploitation of natural gas hydrates.

2 Mathematical calculations
The antenna can radiate effective microwave energy in a specific direction. Monopole 

antenna is one of the most basic categories and can be used as an omnidirectional antenna.

Its basic structure is that the inner conductor of the coaxial cable protrudes from the outer 
conductor in an appropriate length relative to. Theories and experiments show that the 

backward heating effect of the monopole antenna is serious, and it will produce a narrow 
ablation zone with a long tail. In contrast, the heating area formed by the coaxial slot 

antenna is more ideal. The antenna with coaxial slots is the antenna with some slots on the 

surface of outer conductor. According to the dimension of the slots, the slots can be divided 
into radiating slots and non-radiating slots [36-38].

The basic structure of the antenna with coaxial slots designed in this paper is shown in 
Fig. 1. The antenna is composed of a hollow outer conductor 1 and a solid inner 

conductor 4. The inner conductor at the top protrudes from the outer conductor with a 

proper length. The outer conductor is cut to form the slots with H-shaped structure. These
radiation slots can cut the microwave line and establish excitation microwave
electromagnetic field. The material of the outer conductor 1 can be made by stainless steel 

in consideration of corrosion resistance, workability and strength. The surface of the outer
conductor 1 is uniformly arranged with multiple H-shaped slots in the radial direction to 

expand the radiation direction range of microwave heating. Copper should be selected as 
the material of the inner conductor 4 considering its excellent performance in the electronic 
field. The filler 3 between the inner and outer conductor should be made of low dielectric 

loss, insulating and impermeable material Teflon. Because of its good pressure resistance, it 
can also be used as an antenna shell to protect the antenna.

Fig. 1. Structure of the antenna with coaxial slots: 1 – the outer conductor; 2 – H-shaped slots; 3 –

filler (Teflon); 4 – the inner conductor.
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Studies have shown that the dielectric properties of hydrates in the microwave 
frequency range are similar to those of ice and dry sand [39]. The extension length of the 
inner conductor is related to the effective wavelength in the filler, while the effective 

wavelength is related to the microwave frequency and relative permittivity. The calculation 
formula is as follows [39]:

eff
r

c
f

�
�

� ,          (1)

where λeff – the effective wavelength, m; c – the speed of light in vacuum, c = 3·108 m/s;

f – the frequency of microwave radiation, Hz; εr – the relative permittivity.
There are transmission electromagnetic waves and cutoff electromagnetic waves due to 

different frequencies. The frequency determined by the critical state between transmission 
and cutoff is called cutoff frequency. The wavelength corresponding to this frequency is

called cut-off wavelength [39]. When the working wavelength exceeds the cut-off 

wavelength, only one mode of electromagnetic wave can be transmitted. If it does not 
exceed this wavelength, multiple modes of waves can be propagated. Since the single-mode 

transmission is farther than that of multi-mode [34], and the coaxial line is mainly TEM 
mode. It is necessary to ensure that only the TEM mode is transmitted in the coaxial media,

considering the actual long-distance transmission in the actual design.

The calculation of the diameter of the inner and outer conductors of the coaxial slit 
antenna mainly considers the following two factors [39].

1. The working wavelength must fit the following conditions:

� � � �1.1 1.1c TEM a b� � �� � 	 ,         (2)

where λc – the working wavelength, m; a – the radius of the inner conductor, mm; b – the
radius of the outer conductor, mm.

2. The antenna should have a large power capacity and a small attenuation coefficient. 
According to experience, the characteristic impedance can be selected as 50 Ω. The ratio of 

the characteristic impedance to the inner and outer conductor diameters is calculated as 
follows:

60
lnc

r

bZ
a�


 �� � 
� �

,         (3)

where Zc – the characteristic impedance, Ω; εr – the relative permittivity of the filler, F/m.
The theoretical value of the slot’s length is related to the effective wavelength and 

relative permittivity. The calculation formula is as follows:

� �
1

2 1

eff

r
l

�

�
� �

	
,           (4)

where l – the length of slots, mm.
The theoretical value of the gap distance is also related to the effective wavelength, and 

needs to fulfill the requirements of constant amplitude and in-phase feeding. The general 

calculation formula is as follows:

1

2
effG �� ,           (5)

where G – the gap distance, mm.

The distance (G2, mm) from the center of the first slot to the microwave input end is 
usually taken a quarter of the waveguide wavelength:
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2
1

4
effG �� .           (6)

The antenna needs to be able to work under certain pressure conditions, thus the wall 

thickness of the outer conductor can be simply calculated by the following formula:

2

KPDt
KP�

�
�

,           (7)

where t – the wall thickness of outer conductor, mm; K – the safety factor, K = 2; P – the 

working pressure that needs to be met, Pa; D – the diameter of the outer conductor, m;
σ – the allowable stress of the material selected for the outer conductor, Pa.

The calculation results of main parameters of the antenna are shown in Table 1. The 

schematic diagram of the size of antenna with coaxial slot is shown in Figs. 2 and 3.

Table 1. The parameters of the antenna with coaxial slots.

Parameters Value

Frequency f, GHz 2.45

Effective wavelength λeff, mm 70.7

Characteristic impedance Zc, Ω 50

Radius of inner conductor a, mm 4.5

Radius of inner conductor b, mm 15

Wall thickness of outer conductor t, mm 3

Length of slots l, mm 12 (radial direction) / 14 (axial direction)

Gap distance G, mm 35

Distance from the first slot to the 

microwave input G2, mm
16

Width of slots w, mm 2

Fig. 2. Schematic diagram of the antenna with coaxial slots: 1 – slot; 2 – the outer conductor; 

3 – filler; 4 – the inner conductor.

3 Results of simulation and discussion
According to preliminary calculation, using software HFSS and ANSYS to simulate the 
electromagnetic field and temperature field of the antenna in the process of heating the 

secondary hydrate. Based on the principle of microwave heating and actual situation of 
hydrate exploitation [34-41], 2.45 GHz frequency is selected and the remote end of antenna 

with coaxial slots serves as wave port. 
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(a) (b)

Fig. 3. Schematic diagram of outer surface and slots of antenna: antenna outer surface (a); details (b)

of the slot in red square in Figure (a).

The material to be heated is hydrate, which the relative permittivity is 3 and dielectric loss 
tangent is 0.0006. The length of antenna is 1000 mm. The radiation area is a cylinder, which 
the radius is 50 mm and length is 2000 mm. The model of antenna is showed in Fig. 4.

Fig. 4. Design model of antenna and material (hydrate) to be heated.

Tn antenna with coaxial slots mainly relies on the slots opened on the coaxial line and 
coaxial port to radiate microwave energy to heat hydrate. Under the condition of 2.45 GHz, 
the far-field radiation pattern and 3D polarization plot of the designed antenna are showed 

in Fig. 5. It can be seen that antenna has a better radiation in all direction, which also proves 

that the antenna will irritate microwaves through slots to hydrate in all around.

(a) (b)

Fig. 5. Simulation field of antenna: far-field radiation pattern of antenna (a); far-field 3D polarization 

plot (b).
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Considering the thermal properties of hydrates, the temperature field and electric field 
in the heating process are different. In the heating process, a series of issues such as heat 
conduction, heat diffusion, and heat dissipation of the cavity need to be considered. 

Therefore, using software HFSS and ANSYS as a joint simulation. As shown in Fig. 6, 
solutions of HFSS software are imported into ANSYS to analyze the steady-state thermal 

and transient thermal of using the antenna heating secondary hydrate.

Fig. 6. Joint simulation.

In ANSYS, the energy absorption of each part of the simulation can be seen (Fig. 7).

Cylinder 1 is the model of the heated hydrate. The input power is 300 w. Since the field and 

dissipation inside the metal are not calculated in HFSS software, this value is better than the 
real situation.

Fig. 7. Volume loss density of antenna and hydrate.

From the Steady-State thermal simulation (Fig. 8), it shows that the antenna can heat the 
secondary hydrate to 24℃. According to the hydrate phase equilibrium theory model, the 

decomposition condition of hydrate can be satisfied.

(a) (b)

Fig. 8. Steady-state thermal of using the antenna heating secondary hydrate: a panoramic view of the 

simulation (a); a section view of the simulation (b).
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As shown in Fig. 9, it can be found that the heating rate and temperature uniformity of 
the antenna to hydrate are effective, which shows that the antenna can achieve the purpose 
of inhibiting the secondary formation of hydrate.

(a)

(b)

Fig. 9. Trasient thermal of using antenna to heat secondary hydrate: trasient thermal in 1800 s (a);

trasient thermal in 3600 s (b).

5 Conclusions
The special antenna with coaxial slots which is used to heat secondary hydrates is 
calculated and designed according to related theories, such as dielectric theory, waveguide 

theory and slot antenna theory, etc.

The antenna is designed with several ‘H’-shaped slots based on frequency of 2.45 GHz, 
and the diameter of outer conductor is 30 mm, which makes it can be easily lowered into 

the gas producing channel to prevent the secondary formation of hydrate.
From the simulation results of far-field radiation in HFSS software, the antenna has 

good omnidirectional radiation. Then combining software HFSS and ANSYS to simulate 

the heating effect of the antenna on the secondary hydrate. It can be discovered that the 
secondary hydrate can be heated from -3.8 to 17.8℃ within 1800 s. While in 3600 s, the 

hydrate can be heated from -3.4 to 27.3℃. According to the model of hydrate phase 
equilibrium, hydrate can be decomposed under this condition. Therefore, based on 

simulations, it has been demonstrated that the antenna can effectively radiate microwaves to 

heat hydrates and prevent the secondary formation of hydrates.
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