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Abstract. The gravimetric method was used to determine the corrosion 

rate of a pipe for coiled tubing. Scanning electron and optical microscopy 

were used to study the microstructure and to determine the nature of 

corrosion damages. It has been found that corrosion processes of different 

nature occurred in the studied systems “metal – environment”, in 

particular, in acid solutions, corrosion was caused by the of hydrochloric 

acid and the ambient temperature of 70°С. In solution with a smaller acid 

content, along with the general corrosion, there is a significant localization 

of the corrosion process (deep corrosion damage is formed: macro pitting 

and corrosion ulcers). The general corrosion was observed in the HCl 

solution (13 mass %), which destroys the pipe walls after 576 h of 

exposure. The neutral solutions caused the general corrosion of smaller 

intensity in comparison with the acidic environments, even taking into 

account the temperature factor. The surface-active substances or petroleum 

products that are present in the solutions, form barrier films on the steel 

surface, which prevent the access of corrosive components from the 

environment to the surface of the material, especially during the short 

exposure time. With the increase of the exposure at the elevated 

temperatures, the barrier films break down and the steel surface undergoes 

the general corrosion. 

1 Introduction 

One of the main current trends in the global gas and oil industry is to enhance the efficiency 

of hydrocarbons production. Today, there are various ways to increase the efficiency of gas 

and oil production: the influence on reservoirs, the use of new technologies for drilling 

wells, modern equipment for overhaul and restoration of wells, etc. 

However, a special place among the above methods is occupied by “coiled tubing” (CT) 

technologies, which are based on the use of a very long metal pipe. They have high 

economic efficiency, are in a state of continuous development and improvement [1, 2], and 

                                                
*
Corresponding author: syrotyuk@ipm.lviv.ua 

E3S Web of Conferences 230 , 01018 (2021)

Gas Hydrate Technologies: Global Trends, Challenges and Horizons - 2020
https://doi.org/10.1051/e3sconf/202123001018

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 

https://www.scopus.com/affil/profile.uri?afid=60008259
https://www.scopus.com/affil/profile.uri?afid=60017351


there exists a certain international association to coordinate these efforts (Intervention & 

Coiled Tubing Association (ICoTA) https://www.icota.com/). 

The main element of the whole complex of equipment is a welded metal pipe with a 

length of 3-9 km (or more), wound on a drum. It should be noted that pipe CT works in the 

elastic-plastic area of deformation, and this causes special requirements for the quality of 

the pipe, and, consequently, to the characteristics of the pipe material and production 

technology. Nevertheless, as a result of long-term operation, local destruction of pipes is 

possible, which will cause an emergency situation [3, 4]. 

CT pipes work under cyclic bending loads and combined action of aggressive working 

environments [4], which contributes to the manifestations of corrosion [5, 6]. At the same 

time, localized metal pipe corrosion is characterized by the highest velocities, especially 

under the action of cyclic and bending loads [7]. 

The combined effect of fatigue and corrosion is one of the main causes of emergencies 

before the depletion of the resource of the CT pipes, caused by surface damage and at loads 

much lower than permissible [3, 4]. The decrease in the resistance to the cracks propagation 

in the material, and consequently the decrease in the resource of the CT pipes, is most 

likely due to the formation of fatigue cracks from surface defects [8, 9] (mechanical defects 

or corrosion damage) at high cross-sectional stresses. 

According to the statistic data of oil and gas companies operating in Ukraine and 

actively using CT technologies, the most common damages of pipes in their practice are: 

1. Mechanical damage: 

– damage by holding dies; 

– erroneous closing of the valve on the fountain fittings; 

– emergency lift with injector defects. 

2. Operational damage: 

– blowholes on the pipe (depressurization of the pipe by the violation of the washing 

technology); 

– buckling of the pipe caused by the excess of differential pressure; 

– pits on the pipe surface, formed by the violation of the technology of leaching of propane. 

3. CT pipes damage due to acids or gas hydrates: 

– fracture of the pipe by the violation of chemical treatment technology (Fig. 1); 

– corrosion damage during long-term storage of pipe with violation of preservation 

technology; 

– gas hydrates cause of internal pitting corrosion of CT pipes, which is observed as the 

neutral and so the acidic environments. 

 

 

Fig. 1. Corrosion damage to the CT pipe after acid jobs. 
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4. Damage caused by long operation and violation of terms for periodic control of CT 

pipes state: 

– fatigue damage, flaw; 

– break, fractures of the CT pipes (excess of the number of tripping operations (TO)). 

Given the complexity of the TO, the injection of reagents [10], and compliance with the 

technology of work, attention is mainly paid to the number of TO. Cases of mechanical or 

fatigue damage during winding and unwinding are investigated, and much less attention is 

paid to the issue of corrosion [11-13]. 

2 Methods 

QT-800 steel [14], from which CT pipes are made, was tested. It is high-strength low-alloy 

steel [15] with alloying additives to ensure resistance to atmospheric corrosion. The nominal 

chemical composition meets the requirements of the standard API 5ST CT80: 0.150 mass % C; 

≤ 0.430 Si; 0.820 Mn; 0.570 Cr; ≤ 0.019 P; ≤ 0.001 S; ≤ 0.220 Cu; ≤ 0.08 Ni; 0.19 Mo; 0.017 

Nb; 0.010-0.020 Ti; 0.015-0.040 V; 0.070-0.120 Al, remainder – Fe. Mo and Nb increase the 

hardenability of steel and improve the conversion of ferrite. Steel structure: polygonal ferrite 

and granulated bainite [16]. Microstructural features of steel are shown in Fig. 2. 

 

 

Fig. 2. The structure (×1000) of QT-800 steel after etching. 

Such corrosive environment were used: 

– I – acid solution, recipe 1 (low content HCl + complex of additives); 

– II – acid solution, recipe 2 (13 mass % HCl + complex of additives); 

– III – special aqueous solution NS4 [17], modeling groundwater in neutral soils 

(0.122 g/l KCl; 0.483 g/l NaHCO3; 0.137 g/l CaCl2; 0.131 g/l MgCl2); 

– IV – formation water + SAS (surface-active substances); 

– V – condensate from the Yablunivsky oil and gas condensate field. 

Corrosion investigations. Samples for tests for general corrosion [18-20] were cut from 

a CT pipe 38.1×2.77 mm by a technology, which made it possible to consider the 

peculiarities of CT production. They had the same shape and size, they were ground (to 

roughness Ra = 0.63 m), degreased with acetone, dried, and kept in a desiccator for 2 h. 

The samples were completely immersed in a corrosive medium and kept in a thermostat 

at a temperature of 70°C to reproduce real operating conditions [21, 22]. 

The corrosion rate Km was determined by the gravimetric method after exposure to a 

corrosive environment under natural aeration and removal of corrosion products. Weighed 

on the analytical weighing stales with an error of ±0.0001 g. To calculate the corrosion rate 

the known formula was used: 
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, g/(cm2·h),    (1) 

where Δm – the change in mass of the sample after exposure to a corrosive environment and 

the removal of corrosion products (g); S – the surface area of the sample (cm2); t – duration of 

exposure (h). EVO-40XUP (Zeiss) scanning electron microscope was used to determine the 

nature of corrosion damage. 

3. Results and discussion 

According to the results of studies of total corrosion in five working solutions, it was found 

that the corrosion rate in acidic [22, 23] solutions (I, II) is significantly higher than in 

neutral [24] (III, IV, and V). For ease of analysis, the results of corrosion studies are 

presented separately for acidic and neutral working solutions. 

The highest corrosion rate (Fig. 3) was observed in solution II consisting of 13 mass % 

HCl, this is the most aggressive solution among the studied. Here, an increase in the 

corrosion rate was observed in time up to 288 h of exposure, after which the corrosion rate 

decreased slightly. This extreme nature of the change in the corrosion rate is due to several 

factors. The corrosion process is a surface phenomenon, in which the metal surface 

dissolves. Since the primary surface area is taken into account when calculating the 

corrosion rate, then under an extremely active working environment (13 mass % HCl and 

70°С) the active surface area will increase due to the increase of surface relief (Fig. 4) 

during exposure to aggressive environments. (Fig. 3). 

 

 

Fig. 3. The corrosion rate of QT-800 steel vs different times of exposure in an acid corrosive environment. 

After 288 h of exposure, the corrosion rate slightly decreases due to the solution 

depletion (reduction of the proportion of free corrosive components of the solution) and 

reduction of the active surface area due to metal dissolution in an aggressive working 

environment, what is confirmed by significant weight loss of the studied sample (Figs. 3 

and 4). The steel corrosion rate in the solution I much lower compared to solution II, due to 

the lower aggressiveness of this working environment under operating conditions. However, 

the corrosion process is more active in comparison with neutral working media, and shows a 

steady increase in rate during exposure from 24 to 576 h, due to, as in the previous case, the 

increase in the active surface area of the sample during the experiment. Here, as in the 

previous case, the process of general corrosion is observed which is reflected in a significant 

loss of material over time, and a significant localization of the corrosion process (deep 

corrosion damage to the surface of samples such as micro pitting and corrosion pits).  
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Fig. 4. The surface of the samples after exposure to acidic solutions recipe 1 and recipe 2 duration 

24 h (a), 168 h (b), 288 h (c), and 576 h (d). 

However, in this case, the process of local corrosion is more pronounced compared to the 

previous one, which is due to less activity of the working environment, and consequently less 

intensity of the general corrosion process. 

A classical process of corrosion rate decrease during exposure in solution III was 

observed (Fig. 5) due to the reduction of the active surface over time because of the passive 

oxide and hydroxide film formation on the metal surface. Here, the corrosion rate is higher 

as compared to standard experimental conditions, resulting from the high ambient 

temperature (70°C). 

 

 

Fig. 5. The corrosion rate of QT-800 steel vs different times of exposure in the neutral corrosive environment. 

The presence of SAS in environment IV influences the steel corrosion (Fig. 5) in the 

working environment. During the first 24 hours, barrier films are formed on the steel surface, 

which is reflected in the conditionally negative corrosion rate. The corrosion rate was 
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determined by the gravimetric method, so the mass of the samples after exposure to 24 h in 

the working environment is greater than the initial one, due to the deposition of SAS on the 

material surface and the formation of a barrier film. It makes it difficult for corrosive active 

components of the environment to access the surface of the material. As exposure to high 

temperatures increases, the barrier films gradually break down. After exposure for 288 h, the 

corrosion rate is higher even than NS4 (environment III) after 24 h (Fig. 6). 

 

 

Fig. 6. The surface of the samples after exposure in the neutral solutions (ІІІ, ІV, V) duration 24 h (a), 

168 h (b), 288 h (c), and 576 h (d). 

This is due to the higher corrosion activity of the medium compared to NS4, and a fairly 

significant porosity of the formed barrier film at a temperature of 70°C, which accelerates 

corrosion processes. After exposure to 576 h, the corrosion rates of the test material in 

media III and IV, in NS4 and in formation water, respectively, are practically equalized, 

which is explained by the loss of barrier properties of the formed film. 

Corrosion processes in the condensate from the Yablunivsky oil and gas condensate 

field (solution V) have similar tendencies to change the rate of the corrosion process as in 
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solution IV. Presumably, such nature of the corrosion rate changes is stipulated by the same 

reasons as in the previous case, but this medium is less corrosive, which causes the decrease 

of the corrosion rate indicators in 4-6 times. 

4. Conclusions 

It has been found that corrosion processes of different nature occurred in the studied 

systems “metal – environment”, In particular, in acid solutions, corrosion was caused by the 

content? of hydrochloric acid and the ambient temperature of 70°С. In solution with a 

smaller acid content, along with the general corrosion, there is a significant localization of 

the corrosion process (deep corrosion damage is formed: macro pitting and corrosion 

ulcers). The general corrosion was observed in the HCl solution (13 mass %), which 

destroys the pipe walls after 576 h of exposure.  

The neutral solutions caused the general corrosion of smaller intensity in comparison 

with the acidic environments, even taking into account the temperature factor. The surface-

active substances or petroleum products that are present in the solutions, form barrier films 

on the steel surface, which prevent the access of corrosive components from the 

environment to the surface of the material, especially during the short exposure time. With 

the increase of the exposure at the elevated temperatures, the barrier films break down and 

the steel surface undergoes the general corrosion. 

In practice, after finishing work with acid solutions, it is necessary to neutralize their 

action with alkalis, since the residues of acid solutions or their vapors can accumulate in the 

coils of CT pipes and favor the development of local corrosion damages. 

Continuing to work in this direction, the authors want to consider in more detail the 

action of gas hydrates on the corrosion resistance [18, 19, 24] of CT pipes. Especially, 

action acidic gases such as H2S and CO2, which are components of gas hydrates, and 

dissolve in water, can accelerate the internal pitting corrosion of CT pipes. 

The presented study was conducted within the project R6.1 “Development of new methods for 

improving reliability and durability of the flexible pipes for gas and oil extraction by the coiled tubing 

technologies” of the Targeted Programme of Scientific Research of National Academy of Sciences of 

Ukraine “Reliability and durability of materials, constructions, equipment and structures” (“RESURS-2”). 
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