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Abstract. A semantic segmentation method based on the fully convolutional network is proposed to detect
the buffer layer defect in high voltage cable automatically. One hundred seventy-seven high-resolution X-
ray images of cables are collected. FCN-8s and VGG16 backbone are adopted. The results indicated that the
FCN-8s achieves the mloU to 0.67 on the test set, proving to be an efficient way to detect the buffer layer

defects.

1 Introduction

High voltage XLPE cable has become one of the core
power equipment for large-capacity power transmission
in cities due to its advantages such as excellent electrical
performance, large transmission capacity, simple
manufacturing  process, easy installation and
maintenance. The rapid growth of high voltage XLPE
cable has posed more challenges to cable lines' operation
and maintenance. In China, body failure caused by cable
buffer layer ablation frequently occurs in recent years [1-
2]. Many researchers have studied the buffer layer gap
characteristics [3], the structure and performance of the
buffer layer [4] and related physical and chemical
analysis of the buffer layer ablation phenomenon [5].
However, there is little research on defect detection, and
no mature detection technology has been formed.

X-ray imaging detection method is a potential
practical technology that can form relatively intuitive
defect images. The defect size of buffer layer ablation
can be obtained relatively quantitatively at some angles.
However, the original X-ray image needs for image
processing. Meanwhile, with the growing number of
cable acquisitions, manual defect-recognition will
inevitably be time-consuming and low efficiency.
Therefore, automatic detection for the buffer layer defect
in high voltage cables is an up-and-coming technology.

In recent years, the deep learning technique
represented by the fully convolutional networks (FCN)
[6] is continuously surpassing the previous image
semantic segmentation techniques in the pixel level
classification task. It is gradually applied in many
professions.

In this paper, on-site X-ray image data set collected
from a cable tunnel is established. Then, the buffer layer
defects are identified by using the technology based on
FCN, thus providing an effective way to liberate the
workforce.
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2 FCN model

The classic convolution neural network (CNN) [7]
comprises the input layer, convolution layers and
pooling layers, and a fully connected multilayer
perceptron  classifier. Convolution and pooling
operations can greatly simplify model complexity and
reduce model parameters. The basic CNN is a feature
extractor with the advantage that human engineers do not
need to design multiple layers of features. Compared to
the standard feed-for-ward neural networks, CNN has
better learning and adaptive ability due to its unique
designs.

The main function of the convolution layer is to
convolve the convolution kernel with the input data of
the upper layer, which the convolution kernel in the
convolutional layer is applied to feature extraction. It can
also reduce the connection between different layers to
prevent overfitting and too many parameters. The next
layer output can be expressed as follows:

.. MooV . .
y(i,j) = Zmzlzn:l x(i+m—1, j+n—1)k(m,n)
=120,/ =12,0q (1

where, ¥ @) is the element of the output matrix y with
X(i+m=1j+n=1) s the element of the
input matrix x with order pxq; is the element of
the convolution kernel k with order MxN.

The pooling layer divides the input data into multiple
non-overlapping regions, and take the maximum value
(maximum pooling) or average value (average pooling)
of each region. It can eliminate non-critical feature
samples, thus improving the training efficiency and
estimation accuracy, and the pooling formula is:

' =max(y)or mean(y) )

where, R is the pooling region.

order pxgq;
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The fully connected layer expands the two-
dimensional data passing through the convolution layer
and pooling layer into one-dimensional data. It can be
expressed as follows:

o= f(we' +b) 3)
where, w is the connection weight vector; c is the
expanded one-dimensional data; b is the bias; o is the
output; f is an activation function which can enhance the
network’ nonlinear characteristics. For example,
rectified linear unit (ReLU) is a popular activation
function which can activate the neurons of the neural
network sparsely, and can be expressed as follows:

ReLU(y(G. ) = {y CHICDZ0 g
0,y(,j)<0

VGG network [8] is a convolution neural network
model developed by the Computer Vision Group of
Oxford University and Google DeepMind researchers in
2014. VGG network structure is simple and has good
generalization performance. The typical network VGG16
is shown in Figure 1.

Different from the CNN in convolution with a full
connection layer to get a fixed-length feature vector for
classification, FCN can accept any size of the input
image. The deconvolution layers are applied to
upsampling the feature map of the final convolution
layer and make the feature map back to the same size of
the input image. Thus, the network can have a prediction
on each pixel, while retaining the original input space
information of images. Figure 2 is the architecture of
FCN adopted in this paper. Its main ideas include:

1. Adopting the end-to-end structure, which makes
the network easy to train;

2. Cancel the full connection layer;

3. When the feature map of the image is down-
sampling to a certain extent, reverse up-sampling is

performed to match the semantic segmentation
annotation map of the image;
4. Up-sampling will lose some information.

Therefore, FCN takes into account the response of the
shallow layer in the network to better predict the details
in the image. As shown in Figure 3, Pool4 and Pool3
responses are considered as outputs of model FCN-16s
and FCN-8s, respectively, and combined with the
original output of FCN-32s for the final semantic
segmentation prediction.
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Figure 1. VGG16 network
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Figure 2. Architecture of FCN-8s, in which the backbone is
VGG16.

Figure 3. Skip Layer of FCNI®!

3 The semantic segmentation method
flow chart

The flowchart of our semantic segmentation method is
shown in Figure 4 and demonstrated as follows:

Step 1. Image acquisition. Use a CCD or flat panel
detector to obtain an X-ray digital grayscale image.

Step 2. Image preprocessing. Use contrast adjustment,
edge sharpening, window width and window level
adjustment for grayscale images to form an image
suitable for human eyes to judge defects. Then, the
image is classified and labelled with or without flaws,
and the image with defects can be processed with image
enhancement.

Step 3. Model training. The FCN model is used for
training, and the hyperparameters of the model are set to
obtain the parameters of the trained model.

Step 4. Model evaluation. Use mloU to evaluate
model performance.

Step 5. Model saving. Save the trained model.

Step 6. Model testing. Test the new data set using the
trained model.
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Figure 4. Flowchart of our semantic segmentation method.
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4 Example

We collected 177 original X-ray images in this example
from a cable tunnel. For the original high-resolution
image, the sliding window method is used to cut the
image into local images, and the local images with
defects are labelled at pixel-level. In this example, the
original image resolution is 2176x1972 and scaled to
896*896, and the local image resolution is 448x448. The
stride of the sliding window is 224 and each local image
marked with defect pixels is rotated by 180 degrees to
enhance the generalization capability. Finally, we get
196 local images with defects, in which 155 local defect
images are used for training, and the rest of the local
images are used for testing. The FCN-8s and the
backbone VGG16 are adopted. The deep learning library
TensorFlow is used for model training.
The cross-entropy loss function is used as follows:

Loss = -ylog y'—(1-y)log(1-)") )
where, y denotes the positive and negative label;

Y denotes the output probability.
The evaluation index of the model is:

1 M TP
mloU = — _ 6
M Z”':l TP+FP+FN ©)

where, M denotes the patches number, which is
computable. TP denotes the true positive predictions; FP
means false positive predictions; FN denotes the false-
negative predictions.

The model training process is as follows:
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Figure 5. The training process of FCN-8s
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Figure 6. FCN-8s for X-ray image sematic segmentation of
high voltage XLPE cable

For the FCN-8s, the initial learning rates are set as
0.001, and the SGD updater is used. The weight decay to
use for regularizing the model is set 10e—4 to prevent
overfitting. The FCN-8s is trained for 1000 epochs, and
the batch size is set as 10.

As can be seen from Figure 5, the Loss and mloU
converge after about 600 epochs on both the training and
test sets except the test Loss, which converges after
about 250 epochs. However, there are some unstable
jump points in the training process. The mloU finally
achieve 0.67 on the test set. Meanwhile, Figure 6 shows
some semantic segmentation results on the test set,
which indicates that the FCN-8s is an efficient way to
detect the buffer layer defects.

5 Conclusion

This study adopts a semantic segmentation method for
high voltage XLPE cable buffer layer defect detection.
The FCN is developed from classic CNN and can
achieve pixel-level prediction. The details through the
pixel-level information, such as the area of buffer layer
defect, can be automatically acquired. The on-site cable
X-ray images are used to verify the FCN-8s, which is
finally proved to be useful. In the future, higher
performance models and more data should be used to
improve the defect detection effectiveness.
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