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Abstract. Maintenance scheduling and vessel routing are critical for the off-shore wind farm to reduce 

maintenance costs. In this research, a systematic framework that takes the advantage of predictive analysis 

for off-shore wind farm maintenance optimization is sketched and the optimization results are presented. The 

proposed framework consists of three different functional modules - the prognostic and diagnostic (P&D) 

module, the wind power prediction module, and the maintenance optimization module. The P&D module 

predicts and diagnoses the system failures based on the operational data of the wind turbine and generates the 

maintenance tasks for execution. The power prediction module predicts the weather conditions and the 

production of the wind turbine in the next 1-3 days, which will be helpful for maintenance task prioritization 

and scheduling. The optimization module absorbs information from the previous two modules as input and 

optimizes the overall maintenance costs. Comparing with the previous research works, this framework 

optimizes the maintenance cost in a more challenging situation by considering the predicted remaining useful 

life from the P&D module and also the future weather condition from the wind power prediction module. In 

the proposed framework, the maintenance scheduling and the vessel routing are optimized collaboratively 

with the consideration of real-time production loss. The result of the proposed framework is demonstrated on 

an off-shore wind farm and reduced maintenance cost is reported. 

1 Introduction 
Offshore wind farms have been rapidly developed over 

the last decade due to the reliable wind source and open 

space for installation[1, 2]. However, one limitation that 

impedes the development of offshore wind farms is its 

high operation and maintenance (O&M) cost caused by 

remoteness, rough environmental conditions, and logistic 

challenges[3]. It is reported in [4-6] that the maintenance 

cost for the offshore wind turbine takes as high as 20-35% 

of lifetime costs. Driven by the need for cost reduction, 

maintenance activity optimization plays a significant role 

in organizing maintenance activities for offshore wind 

farms. In the authors’ opinion, the maintenance costs for 

offshore wind farm breakdown to the visible costs and 

invisible costs. The visible costs mainly consist of the 

maintenance-related costs, such as transportation, 

technician salary, price of spare parts, which have been 

extensively covered in the literature. The invisible cost, 

which essentially refers to the production loss (PL) 

introduced by turbine failures and degradation, is found 

equally important in practice due to the fact that wind 

turbines with higher power ratings are usually erected in 

offshore wind farms [7]. Therefore, this work aims to 

propose a novel optimization model for maintenance 

scheduling and vessel routing by accounting both the PL 

of offshore wind turbines and visible maintenance costs. 

In the current literature, maintenance scheduling and 

vessel routing mainly optimize the visible maintenance 

cost[8-14]. Early investigations in [15-17] utilize 

Traveling Salesman Problem (TSP) and Travelling 

Repairman Problem (TRP) to optimize the transportation 

cost. It is argued in [18] that these models are over-

simplistic to address real-world challenges.  To account 

for the real situation for offshore wind farm maintenance, 

studies in [19, 20] estimate the cost based on simulation 

models and then suggest decisions accordingly. However, 

the use of these approaches needs human involvement and 

expert knowledge, and they are unable to schedule the 

maintenance tasks based on turbine operation conditions. 

To address this concern, the preventive and opportunistic 

maintenance strategies are utilized in [21-23] to schedule 

the maintenance tasks and to optimize the cost as well. To 

better prioritize the maintenance tasks, the use of 

predictive PL of wind turbines or equivalent penalty terms 

are highlighted in a number of recent researches [24-31] 

and report reduced overall cost. Kovács et al. [26, 30] 

utilize a simplified PL model for maintenance scheduling 

for the first time. However, the vessel return route 

optimization is not considered in their investigation and 

the correctness of the PL model is not justified based on 
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real-world data. Irawan et al. [28] consider the vessel 

routing problems but the PL term in their optimization 

model is not considered. Instead of it, a simple penalty 

term is introduced for the delayed tasks.

Summarizing these research works, it is found that the 

production loss (PL) is still less investigated when 

optimizing the maintenance cost. Provided that the PL is 

a dynamic value that accumulates over time if the turbine 

degradation or failure is left unattended, the maintenance 

scheduling and vessel routing become a coupled problem 

that cannot be optimized separately. To fill in these gaps,

the contributions of this research are summarized as 

follows. (1) A systematic methodology for the off-shore 

wind farm maintenance optimization is proposed. The PL 

is utilized in the proposed method to prioritize the 

maintenance tasks and to optimize the vessel route 

collaboratively. (2) The integration of PL term in the 

optimization model is well justified in this work and the 

computation of the production loss is clearly stated.  (4) 

The effectiveness and the superiority of the proposed 

method are validated on the dataset from an off-shore 

wind farm with 27 4MW wind turbines. Reduced 

maintenance costs are reported.

The rest of this paper is organized as follows. The 

engineering problems are formally stated in Section 2. 

The proposed methodology is detailed in Section 3. The 

results and related discussions are presented in Section 4. 

The concluding remarks are given in Section 5.

2 Problem Statement
The main aim of this work is to reduce the maintenance 

cost for the off-shore wind farm by optimizing the 

maintenance activities. In the framework of this research, 

the maintenance cost for the off-shore wind farm is 

divided into a visible part and an invisible part. Visible 

cost for maintenance activities breaks down to the 

transportation cost, labor costs, price of spare parts, wind 

turbine downtime, etc. The invisible cost mainly refers to 

the Production Loss (PL) caused by wind turbine 

degradation and failure. To account for this portion of the 

cost in optimization, the power curving monitoring 

technology and weather forecast in future 1~3 days are 

needed. Power curving monitoring reflects the most 

recent performance of the wind turbine against the 

baseline or design expectations. The weather forecast tells 

the future wind speed distribution that is required to 

compute the future PL within the targeted maintenance 

time window. In this study, the future 1 to 3 days are 

mainly considered.

The inclusion of PL provides evidence to prioritize the 

maintenance tasks and brings new challenges to the 

optimization problem. In previous researches, the cost 

optimization for off-shores wind farms mainly considers 

the cost related to spare parts, service vessels, and 

maintenance technicians [28]. Some papers consider 

adding a penalty rule to quantify the risk of unexpected 

failures [31] or delayed maintenance timing [21, 28].

However, by considering PL in the optimization model, 

the previous static optimization problem becomes a 

dynamic scheduling problem, and the vessel routing and 

maintenance schedules need to be optimized 

collaboratively. 

To tackle these challenges, this research aims to 

address following engineering problems: (1) the necessity 

to include wind turbine PL in maintenance optimization 

needs to be justified and quantified based on both 

simulation data and on-site data; (2) A feasible 

optimization model is required to optimize the vessel 

routing and maintenance scheduling collaboratively, so 

that the overall maintenance cost can be reduced.

3 Technical Approach

3.1. Systematic framework

Fig. 1 Systematic framework of maintenance scheduling optimization for wind farms
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An overview of the proposed framework is described in 

Fig. 1. The input layer of the methodology includes three 

different modules. (1) the PHM module monitors, 

diagnoses, and predicts the failure or degradation of wind 

turbines, and then generates a list of maintenance tasks for 

execution [32-34]. According to a number of recent work, 

the SCADA (Supervisory Control And Data Acquisition) 

system is widely utilized for wind turbine power curving 

monitoring and CMS (Condition Monitoring System) 

data is commonly utilized for the drive train diagnosis.  (2) 

The weather forecast module predicts several ambient 

parameters, like wind speed, humidity, pressure, etc. 

These variables, especially the wind speed, provides 

necessary inputs to compute the production loss of wind 

turbines.  (3) The SCM (Supplier Chain Management) / 

ERP (Enterprise Resource Planning) / MES 

(Manufacturing Execution System) provides useful 

information for the optimization, such as the cost for spare 

parts, availability of technicians, inventory readiness, etc. 

All this information will be utilized as input to the 

optimization model for optimal planning.

The core part of the methodology is the optimization 

model and solver in the second layer of Fig. 1.  In the

second layer, the overall maintenance cost comprises five 

different parts. The regular time salary and the vessel 

rental cost forms the fixed cost for any maintenance 

activity and has very little space for optimization. 

However, the overtime cost, transportation cost, and PL 

of the wind farm are closely related to the maintenance 

scheduling and vessel routing. These three cost terms 

constitute the dynamic cost that needs to be optimized in 

this research. It is also important to note that the overtime 

salary refers to labor costs caused by working overtime 

and the transportation cost is mainly contributed by the 

fuel cost for the vessel.

The expected outcome includes the optimized vessel 

route and maintenance task schedule, the technician 

assignments, and the cost breakdown, as shown in the 

third layer of Fig. 1. The optimized schedule will be given 

in the form of a Gantt Chart and the optimized vessel route 

will be visualized directly on the map. Other details of the 

model output will be demonstrated in results and 

discussions.

3.2 Model for Prognostics-based Maintenance 
Scheduling and Vessel Routing 

The optimization model for routing and maintenance 

scheduling of vessels and technicians with a rolling 

horizon in future 1~3 days is proposed in this section. The 

notations in this paper are shown in Table 1 The model is 

to solve a scheduling problem where geographically 

distributed maintenance tasks are to be performed by 

types of technicians with available vessels in a time 

period .

Table 1 Notations

Parameters

Electricity price at time 

Vessel fuel price per unit time

Whether the vessel is permitted at time t

Whether task can be start at time 

Travel time between task and task 

Time to repair (TTR) of task 

PL of turbine at time caused by degradation

PL of turbine at time during maintenance

Variables

Whether technicians are delivered or picked at node 

at time t by vessel 

Whether task is under maintenance at time 

Whether technicians are at task at time 

Number of technician required by task 

Number of technician on vessel after task 

Whether the vessel travels from turbine to

turbine 

Production loss on task at time 

Overtime salary cost of technicians art task  at 

time 

The objective in the proposed model is to minimize 

total maintenance cost that is written as below:

(1)

The overall cost can breakdown to dynamic cost and 

fixed cost. Dynamic cost refers to the portion of cost in 

Eq.(1) that will worth the optimization efforts. This 

portion of cost, which consists of the PL of wind turbine, 

overtime salary for technicians and the transportation cost 

for vessels, is directly related to the initiated maintenance 

scheduling and vessel routing plans. In comparison, the 

fixed cost refers to the cost that will not be affected by the 

maintenance schedule or vessel routes, such as the price 

of spare parts and the regular salary for technicians. Since 

the fixed cost is only a constant term adding to dynamic 

cost, it is omitted in the final objective function that is 

described in Eq. (2).

(2)

The constraints for the optimization problem in this 

study are given as follows.

(3)

(4)
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(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Eq. (3) and (4) restrict the lower bound of the PL based 

on mathematical treatments that decide whether or

should be accounted in the optimization model at 

current time . Eq. (5) restricts the lower bound of 

technicians’ overtime salary. Eq. (6) ensure that all the 

maintenance activities only take place in the allowed 

working time. Eq. (7) ensures that each task can only be 

performed once by one vessel. Eq. (8) guarantees that the 

technicians dropped off for maintenance can always be 

picked up. what is worth mentioning is that it doesn’t have 

to be the same vessel to perform both technician delivery 

and pickup for one maintenance task. Eq. (10) confines 

that the task will be under maintenance in a time length 

of once the maintenance starts. Eq. (11) ensures that 

technicians will not be at the task if the maintenance 

doesn’t start. Eq. (12) guarantees that the technicians will 

not leave before the maintenance is finished. Eq. (13)

guarantees the travel time from one task to another one is 

no less than the given travel time. Eq. (14) updates the 

number of technicians on the vessel after every delivery 

or pickup visit. Eq. (15) and (16) ensure each vessel leaves 

from and returns to the harbor only once. Eq. (16) ensures 

flow conservation at each task.

In the proposed optimization model, the predictive PL 

is essentially used as evidence to prioritize the 

maintenance tasks. The PL related cost is computed in 

currency unit by multiplying the PL (in kWh) with the 

electricity price in the market. This PL cost term considers 

both the PL introduced by turbine the degradation ( )

before maintenance and the PL is contributed by the 

turbine downtime ( ) during the maintenance. The 

term  is computed following Eq. 

(17)

Where is a function that maps the input wind 

speed to the expected power output, denotes the 

wind speed at time denotes the design power curve 

of turbine provided by the OEM, denotes the 

estimated power curve based on the most recent real time 

data points.

And the term caused by turbine downtime can be 

written as:

(18)

The constraints of PL are stated in Eq. (3) and (4).

When assigning maintenance tasks to personnel, the 

present model is defined a more practical situation 

comparing with the previous works in [18, 26, 30].  The 

present model considers the expertise of technicians into 

M different types in Eq. (5) and (13). The total number for 

each type of technicians is regarded as limited in the 

present model and this number is adjustable by users on 

the real situation day from day. Treatment of these two 

practical constraints in optimization is rather challenge, 

since the consideration of these two terms may expand the 

total search space for optimization exponentially and 

intricate the numerical computation significantly.

4 Case Study
In this section, the proposed method is implemented on an 

offshore wind farm with 27 4MW wind turbines. In one 

typical maintenance scenario, 11 wind turbines need to be 

repaired within future 1~3 days based on the prognosis 

results. 2 vessels and 19 technicians are available in the 

O&M base to execute the maintenance activities. The 

main goal is to obtain a maintenance solution by 

optimizing the maintenance scheduling and routing of 2 

vessels, such that the overall maintenance cost can be 

reduced. 

The maintenance scheduling and vessel routing results 

obtained from the proposed model can be found in Fig. 2

and Fig. 3. The geographical distribution of wind turbines 

can be found in Fig. 2, where the turbines need to be 

maintained are highlighted as red. The vessel assignment 

and routing solution is also illustrated in Fig. 2. In 

previous research, it is either one vessel is involved in the 

maintenance scheduling, or the whole wind farm are 

divided into several sub-areas that each vessel only 

executes the maintenance tasks in one sub-area, which 

still can be seen as one vessel routing optimization 

problem. One disadvantage of these approaches is the lack 
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of the consideration of resource sharing among different 

vessels. Compared with previous researches, the optimal 

routing solution obtained by proposed model is capable to 

share the resources perform the maintenance tasks jointly 

among different vessels. One good example for 

illustration is the maintenance task on wind turbine 2.  As 

shown in Fig. 2, the vessel 1 is assigned to drop 

technicians to the turbine to perform the maintenance, but 

vessel 2 is assigned to pick up the technicians when the 

maintenance activity is done.  The Gantt chart in Fig. 3 is 

used for maintenance activities scheduling. The 

maintenance tasks are prioritized by the proposed method, 

provided that the PL of different wind turbines could have 

significant differences caused by different performance 

degradation and wind speed change. These results clearly 

indicate that the proposed method can effectively provide 

an optimal maintenance scheduling and routing solution 

to obtain a good cost-benefit.

Fig. 2 The maintenance vessel route solution

Fig. 3 Gantt Chart of maintenance activities scheduling

To illustrate the superiority of this proposed method, 

we benchmark the overall cost from proposed model with 

other 2 methods. In model 1, the optimization model 

doesn’t consider the PL but all the terms and constraints 

are kept the same with the proposed model in this work 

except the PL constraint in Eq. (3) and (4) are set to 0 

manually, which can be seen as a representative of the 

methods presented recently without employment of 

turbine prognosis information. In model 2, the 

optimization model considers the PL, but divide the entire 

maintenance tasks into 2 clusters that each vessel is 

assigned to perform the maintenance in one cluster 

individually. This method employed for benchmarking is 

similar to the method proposed by Irawan et al. (2017). 

The proposed work in this paper is denoted as model 3.

Based the fixed maintenance costs, it is shown in 

Table 2 that the invisible cost for wind turbine 

maintenance, a.k.a. the PL of wind turbines take a 

significant portion of overall dynamic maintenance cost. 

The overall maintenance cost is optimized by accounting 

for the PL of wind turbines. Table 2 also demonstrates that 

the overall maintenance cost based on the proposed model 

is 510.4 less than model 3, and 1023.6 less than model 2, 

and the saved PL cost is as high as 793 and 1280.5. This 

validates the superiority of the proposed model in terms 

of PL cost optimization and overall cost optimization.

Table 2 Cost comparison among 3 models

Trans. cost PL
Fixed

cost

Total 

cost

Proposed

method
809.4 2815.7 4800 8425.0

Method 1 603.1 4018.3 4800 9421.4

Method 2 715.2 3254.6 4800 8769.7

5 Conclusion
A systematic framework for the off-shore wind farm 

maintenance scheduling and routing is proposed in this 

paper. The effectiveness of the proposed model is 

validated based on the real data from an off-shore wind 

farm with 27 4MW wind turbines. The validation results 

show that, (1) PL of wind turbine takes a large portion of 

the maintenance cost due to the large power capacity of 

the off-shore wind turbine. Therefore, it is necessary to 

consider this portion of invisible cost during the 

maintenance activities optimization; (2) The proposed 

method can effectively prioritize the maintenance order 

based on wind turbine with different real time PL, so that 

a feasible and optimal maintenance schedule and vessel 

routes can be properly planned. This proposed 

methodology has been integrated into a software platform 

to provide maintenance optimization and planning 

services for the off-shore wind farms.

Future work will consider the model performance 

validation on a larger scale such as multiple wind farms 

or more maintenance tasks, motivated by the ever-

increasing demand for wind energy. A novel optimization 

solver, which is designed for this optimization model 

specifically, will also be considered in future work.
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