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Abstract. This paper proposes a coalitional game-theoretical model for 

consumers’ flexibility coalition formation, supported by an optimization 

model based on differential evolution. Traditionally, the participation in 

conventional electricity markets used to be limited to large producers and 

consumers. The final end-users contract their energy supply with retailers, 

since due to the smaller quantity available for trading, they cannot 

participate in electricity market transactions. Nowadays, the growing 

concept of local electricity market brings many advantages to the end-users. 

The flexibility negotiation considering local areas is an important procedure 

for network operators and it is incorporating a local electricity market 

opportunity. A coalition formation model to facilitate small players 

participation in the flexibility market proposed by the network operator is 

addressed in this work. The inclusion of Shapley value in the proposed 

model enables finding the best coalition structures considering the fairness 

of the coalitions in addition to the potential income achieved by the 

consumers when selling their flexibility. An optimization model based on 

differential evolution is also proposed as the way to find the optimal 

coalition structures based on the multi-criteria specifications.  

1  Introduction 

Renewable energy sources’ large-scale integration in power and energy systems has been 

heavily verified in recent years. Several changes in the planning and operation of the power 

systems have been introduced due the volatility of the distributed renewable sources 

generators (namely solar and wind sources). The network operators that are in charge of 

electrical network operation and planning should take advantage of the positive impact that 

the high penetration of renewable generators can make [1]. 

The transmission system operators (TSO) and distribution system operators (DSO) are 

the electrical network operators, for transmission networks and distributions networks 
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respectively. The massive integration of renewable energy sources makes networks operators 

search for solutions for the new challenges. Consumption flexibility is seen as one of the 

most promising solutions to overcome the variability from the generation side and mitigate 

various of the problems that are emerging [2]. The coordination between TSO and DSO is 

needed in order to capture the great flexibility potential. The end consumers are considered 

power systems agents with great potential in provide flexibility. TSO was been used the 

flexibility provided by large utilities in order to adapt the consumption in a certain local to 

the needs of the electricity network [3]. The DSO is following the same approach but 

considering the end-users connected to distribution network, namely households, residential 

buildings, and some small industries [4]. 

Currently the negotiation of flexibility is a hot research topic and the actual application 

of flexibility trading uses prices incentives [5] or dynamic tariff [6] to incentive the potential 

flexibility providers to deliver their flexibility. Usually, the flexibility providers are rewarded 

considering its potential for flexibility delivered, so if the provider has a great potential in 

terms of volume it is rewarded in a better way. The participation of small end-users 

(households) is affected by large end-users, thus those that negotiate large volumes have 

greater influence in the decision. 

The problem of coalitions in the power system area has been applied in order to organise 

groups in energy communities. In [7], a cooperative game theory model is used to create 

coalitional groups minimising the energy costs of the coalitions. Another relevant application 

is presented in [8] which considers the incentives by optimisation of energy storage system 

control for prosumer coalitions. The objective of optimisation is to get the highest monetary 

profits for the participants through collaborative operation of multiple energy storage 

systems. This paper proposes an optimisation problem for coalition formation for flexibility 

provision but considering the fairness in the coalition formation. The fairness is measured 

considering the standard deviation of the coalition Shapley values. In [9] the Shapley value 

is used in other way, to obtain a fair remuneration in demand response provision, the Shapley 

value is obtained considering the individual contribution of each prosumer. In this study the 

Shapley value is obtained considering different attributes for each prosumer. The 

optimisation process is performed considering an evolutionary algorithm hybrid-adaptive 

differential algorithm (HyDE). The results show a fairness coalitions formation with a 

maximisation of incomes for all considered agents. 

The rest of this paper is structured as follows: Section 1 introduces the concept of 

flexibility markets and the necessities of flexibility for network operators, the coalition 

problem and the use of Shapely value is also present, Section 2 is presented the proposed 

methodology with the presentation of problem formulation and the method used for solve the 

problem. Section 3 the case studies and the results of the paper is presented and discussed. 

Section 4 concludes the paper and present some future works. 

2  Proposed Methodology  

This section presents the proposed methodology for the coalition formation in flexibility 

participation considering the fairness. Figure 1 present the overview of the problem. 
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Fig. 1. Coalition Formation Example 

As can seen in figure 1, there is a distributed system operator (DSO) that makes a request 

for the end-users. The request that is made considers the flexibility in end-users, which is 

used by the DSO to avoid possible contingencies that can appear during the electrical network 

operation. For the problem resolution we consider that DSO and end-users are different 

agents, and within end-user agents we can have different types, e.g. households, commercial 

and residential buildings or industries. Each of these end-users agents has the ability to 

provide flexibility when the DSO makes a request, and DSO remunerates each end-users for 

the provision. Each end-user agent has different attributes that the DSO agent takes into 

account for the coalition formation. The attributes are: price desired, amount available, 

participation rate, location, facility type and comfort affect. The remuneration for each agent 

depends on the coalition in which is placed because the price for remuneration is different 

from coalition to coalition. The number of the coalition in total is equal to the number of 

agents, which means that each agent is a coalition. The proposed problem is to try to form 

coalitions in order to obtain a solution that is fairness in the distribution of incomes. 

2.1  Mathematical Formulation  

The present section shows the mathematical formulation of the proposed problem. In 

equation 1 is presented the objective function of the maximisation problem. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒: 𝑂𝑏𝑗 𝐹𝑢𝑛 =  ∑ (𝐼𝑖) − ∑ stdc
𝑐∈𝑁𝐶𝑖∈𝑁𝐼

  (1) 

where, 𝐼𝑖  represents the incomes received by agent 𝑖, stdc represents the standard deviation 

of the remuneration received by agents belonging to a coalition 𝑐, 𝑁𝐼 represents the number 

of agents and 𝑁𝐶  the number of coalitions. 

The term ∑ (𝐼𝑖)𝑖∈𝑁𝐼
 gives the total incomes of all agents in all coalitions 𝑁𝐶 , meaning that 

maximising this term will result in a maximal gain for all agents. The second term, i.e. 
∑ stdc𝑐∈𝑁𝐶

 provides the sum of standard deviation in relation to the distribution of 

remuneration based in the shapely values in each coalition 𝑐 ∈ 𝑁𝐶 . The negative sign is used 

to optimise the minimisation of such term, which will result in a fairness state for all possible 

coalitions within all agents. Equation 2 presents the incomes calculation for each agent 𝑖. 

𝐼𝑖 = 𝐹𝑖 × 𝑃𝑐 , ∀𝑖 ∈ 𝑁𝑖   (2) 

where, 𝑃𝑐 represents the weighed average price for each coalition and 𝐹𝑖 represents the 

available flexibility of agent 𝑖 in a given coalition 𝑐. 
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The weighed average price is calculated considering the importance of each agent 𝑖 has 

in the coalition. This importance is measured considering the available flexibility of each 

agent, equation 3 shows the weighed average price for each coalition.  

𝑃𝑐 = ∑ 𝑃𝑖 × (
𝐹𝑖  

∑ 𝐹𝑖𝑖∈𝑐

) ,
𝑖∈𝑐

∀𝑐 ∈ 𝑁𝑐   (3) 

where, the term ∑ 𝑃𝑖𝑖∈𝑐  gives the sum of the prices of agents 𝑖 in coalition 𝑐;  

∑ 𝐹𝑖𝑖∈𝑐  represents the total flexibility available in coalition c. Equation 3 gives a price for 

each coalition. In equation 4 is presented the calculation of the standard deviation of each 

coalition. 

stdc =  √
∑ (𝜙𝑖 − 𝜇𝜙𝑐)2

𝑖∈𝑐

|𝑐|
, ∀𝑐 ∈ 𝑁𝑐  (4) 

where, 𝜙𝑖 represents the Shapley value of agent 𝑖 in coalition 𝑐, 𝜇𝜙𝑐 represent the Shapley 

value average in coalition 𝑐, and |𝑐| represent the cardinality of 𝑐. The presented formula in 

equation 4 is the traditional formula of standard deviation calculation. 

With the use of standard deviation in each coalition, present in equation 4, we try to obtain 

a metric for measure the stability of the coalitions. Considering a coalition game, the Shapley 

value 𝜙𝑖 divides playoffs among players according to equation 5. 

𝜙𝑖 =  ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!𝑆⊆𝑁\{𝑖}
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) (5) 

where, 𝑁 is the total number of players and the sum extends over all subsets 𝑆 of 𝑁 not 

containing player 𝑖. 
The Shapley value captures the “marginal contributions” of each agent 𝑖, averaging over 

all the different sequences according to which the grand coalition cloud be built up. The value 

of characteristic function for each agent 𝑖 is given by the application of equation 6. 

𝑣𝑖 = 𝐹𝑖 × 𝑤1 + 𝑃𝑖 × 𝑤2 + 𝑃𝑡𝑖 × 𝑤3 + 𝐿𝑖 × 𝑤4 + 𝐹𝑇𝑖 × 𝑤5 + 𝐶𝐴𝑖 × 𝑤6, ∀𝑖 ∈ 𝑁𝐼 (6) 

where, the 𝑃𝑡𝑖 represent the participation rate in last events of flexibility of agent 𝑖 is used 

for benefit the players that contribute regularly to this type of programs, and thus incentivize 

players participation. 𝐿𝑖 represent the importance of agent 𝑖 location in the network i.e. if the 

location of the customer is more or less beneficial to the system (if the reduction of 

consumption in the specific location contributes to effective power flow). 𝐹𝑇𝑖 represent the 

facility classification of agent 𝑖 and the 𝐶𝐴𝑖 represent the effort placed by the customer in the 

flexibility provision, measures by the relative amount of flexibility provides in relation to the 

total amount of consumption of the player, in order to reward players that make bigger efforts 

(provide a larger percent-age of relative flexibility). The values of 𝑤′𝑠 represent a wight for 

each attribute present in the equation 6. Equation 7 present the coalition formation constraint. 

𝑠. 𝑡. : ∑ 𝐹𝑖 ≥
1

4
× ∑ 𝐹𝑖 , ∀𝑖 ∈ 𝑁𝐼 , ∀𝑐 ∈ 𝑁𝐶

𝑖∈𝑐
 (7) 

where, ∑ 𝐹𝑖𝑖∈𝑐  represent the sum of the flexibility available in coalition 𝑐 and ∑ 𝐹𝑖 is the 

available flexibility sum of all agents. With this constraint we force coalitions to provide at 

least 
1

4
 of the flexibility available on all agents. This constraint is considered because in order 

to keep coalitions balanced in terms of total available flexibility. This is important for the 

DSO for management and operation reasons, in order to assure that a relevant amount of 

flexibility is available from all coalitions. 
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2.2  Hybrid-adaptive Differential Evolution 

Optimal coalition formation is known to be an NP-complete problem [10]. Thus, we 

advocate the use of evolutionary computation to find near-optimal coalition structures in 

acceptable times. In particular, we apply a hybrid-adaptive differential evolution with a decay 

function (HyDE-DF) algorithm recently proposed in [11]. HyDE-DF is a new variation of 

the well-known differential evolution (DE) algorithm [12], and has proven an excelled 

performance solving a variety of problems ranging from benchmark function optimisation to 

smart grid applications. 

As the standard DE, HyDE-DF uses a population (Pop) of solution vectors (called 

individuals) 𝑥⃗𝑖,𝑖,𝐺 = [𝑥1,𝑖,𝐺 , … , 𝑥𝐷,𝑖,𝐺], where 𝐺 is the generation number, and 𝑖 = [1, … , 𝑁𝑃] 

is the number of individuals in the population, to optimise a given function of dimension 𝐷. 

In an initialisation stage, 𝑁𝑃 solutions are generated randomly within lower and upper ranges 

[𝑥𝑙𝑏,𝑗 , 𝑥𝑢𝑏,𝑗]. HyDE-DF follows the general iterative process from of evolutionary 

algorithms, namely the creating of new solutions by means of mutation and recombination 

operators, and performing elitist selection (e.g., solutions with superior performance survive 

into the next generation). 

HyDE-DF uses a mutation operator known as “DE/target-to-perturbed-best/1” that 

modifies the well-known DE/target-to-best/1 strategy [12] with a perturbation of the best 

individual (inspired by the EPSO [13]), and the self-adaptive mechanism of jDE [14]. The 

main operator of HyDE-DF is defined as follows: 

𝑚⃗⃗⃗𝑖,𝐺 = 𝑥⃗𝑖,𝐺 + 𝐹𝑖
1(𝜀. 𝑥⃗𝑏𝑒𝑠𝑡 − 𝑥⃗𝑖,𝐺) + 𝐹𝑖

2(𝑥⃗𝑟1,𝐺 − 𝑥⃗𝑟2,𝐺) (8) 

where 𝐹𝑖
1 and 𝐹𝑖

2 , are scale factors in the range [0,1] independent for each individual 𝑖, and 

𝜀 = 𝒩(𝐹𝑖
3, 1) is a random perturbation factor taken from a normal distribution with mean 𝐹𝑖

3 

and standard deviation 1. 𝐹𝑖
1 , 𝐹𝑖

2 and 𝐹𝑖
3 are updated each iteration following the same rule 

of jDE algorithm (see Sect. III.B of [15]). HyDE-DF incorporates a decay function to perform 

a transition in the iteration process from the main operator of HyDE-DF (Eq. 8) to the basic 

operator of DE. This transition allows an enhance phase of exploration in the early stage of 

evolution and stress the exploitation in later stages of the optimisation [11]. 

After creating the mutant vector, a recombination operator combines the mutant 

individual 𝑚⃗⃗⃗𝑖,𝐺 with the target vector 𝑥⃗𝑖,𝐺 giving place to a new trial 𝑡𝑖,𝐺: 

𝑡𝑖,𝐺 = {
𝑚⃗⃗⃗𝑗,𝑖,𝐺 𝑖𝑓(𝑟𝑎𝑛𝑑𝑖,𝑗[0,1] < Cr ) ∨ (𝑗 = Rnd)

𝑥⃗𝑗,𝑖,𝐺 otherwise                                              
 (9) 

Finally, a simple rule of elitist selection is applied comparing the fitness between the trial 

vector 𝑡𝑖,𝐺, and the target vector 𝑥⃗𝑗,𝑖,𝐺  in the objective function: 

𝑃𝑜𝑝𝑖,𝐺+1 = {
𝑡𝑖,𝐺 𝑖𝑓 𝑓(𝑡𝑖,𝐺) ≤ 𝑓(𝑥⃗𝑖,𝐺)

𝑥⃗𝑗,𝑖,𝐺 otherwise                  
 (10) 

where 𝑃𝑜𝑝𝑖,𝐺+1 is the population of the next generation, that changes by accepting or 

rejecting new individuals, and 𝑓(. ) is the fitness function used to measure the performance 

of an individual (i.e., Eq. (1)).  

After the description of the algorithm, HyDE-DF can be applied easily by defining an 

encoding of solutions (typically as vectors or a numerical string) and a fitness function to 

evaluate such solutions. Thus, to capture all the information required by the encoding of a 

solution in our problem, we define a vector: 
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𝑥⃗ = [{𝑥1, … , 𝑥𝑁}] (11) 

where {𝑥1, … , 𝑥𝑁} ∈ 𝑥⃗ are 𝑁 variables used to represent the coalition structures ΩAgg. The 

encoding of a coalition structure follows a simple label-based clustering encoding[16], in 

which the position of the element indicates the player 𝑛 ∈ 𝑁, while the value in the position 

represents the coalition that the player belongs to. This particular encoding was designed to 

operate over integer values. However, since HyDE-DF operates over real values, we define 

the bounds of variables in the range [1, 𝑘 + 1], being 𝑘 the maximum number of coalitions 

allowed. Then, for the decoding process, we use the floor function, which maps the real 

values to integers in the range [1, 𝑘]. 

 

Fig. 2. Coalition Formation Example 

After the decoding process, solutions can be evaluated in the formulation provided in 

Section 2.1. 

3  Numerical Simulations 

This section is divided into two different subsections: firstly, it is presented the case study 

of the problem and all scenarios tested. Secondly, the results of the proposed methodology 

applied to the case study are shown. 

3.1  Case study  

The case study is composed by one DSO agent, and eleven end-user agents, as can seen 

by table 1, which shows the attributes for all end-users agents. 

Table 1. Agent attributes. 

 𝑭 𝑷 𝑷𝒕 𝑳 𝑭𝑻 𝑪𝑨 

Agent 1 0,036 0,129 0,5 0,77 0,8 0,68 

Agent 2 0,035 0,135 0,76 0,93 0,8 0,77 

Agent 3  0,036 0,279 0,58 0,87 0,8 0,72 

Agent 4 0,060 0,210 0,69 0,75 0,75 0,77 

Agent 5 0,058 0,205 0,76 0,4 0,75 0,72 

Agent 6 0,060 0,219 0,76 0,79 0,75 0,7 

Agent 7  0,026 0,190 0,67 0,43 0,9 0,66 

Agent 8 0,026 0,194 0,66 0,71 0,9 0,66 

Agent 9 0,026 0,180 0,53 0,52 0,9 0,78 

Agent 10 0,624 0,255 0,9 0,95 0,6 0,8 

Agent 11 0,652 0,274 0,9 0,7 0,6 0,8 

In this case study the end-user agents are classified into two different categories, the 

households agents (Agent 1 to Agent 9) and residential buildings agents (Agent 10 and Agent 

11). 
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Considering table 1 it is possible to characterise all end-users agents that participate in 

the coalition formation. By the attribute flexibility, 𝐹 measured in KWh, it is possible to see 

that the Agents 10 and 11 have a large flexibility amount to provide, and it is expected by the 

formula of equation 3 the agents with more capacity to provide flexibility have bigger 

influence on coalition price determination. Considering the column of price attribute, 𝑃 

measured in EUR/kWh, the tendency is that the agents with more flexibility is expected that 

desired a bigger price. In the participation attribute 𝑃𝑡 the agents Agent 10 and 11 are the 

most participating agents in the last DSO agent request. This fact can be justified as this 

agents is a residential building and possibly there is a building manager who is in charge of 

participating in the request. The location attribute, 𝐿, represents the relative distance in 

electrical network of all agents related to the connection on the main electrical network. 

Agent 10 and 2 are the highest ranked agents in this category. The facility type attribute is 

used to benefit the agents that have the ability to provide less flexibility. In this case the Agent 

7, 8 and 9 have the highest classification. For the comfort affect attribute 𝐶𝐴 the Agent 10 

and 11 is the agents with the highest classification, which means that is the agents that are 

able to reduce more consumption compared to their overall consumption.  

Table 2 specifies the weights attributes for the different considered scenarios. 

Table 2. Attribute weight. 

  𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 𝒘𝟔 

Scenario 1 0,17 0,17 0,17 0,17 0,17 0,17 

Scenario 2 1,00 0 0 0 0 0 

Scenario 3 0 1,00 0 0 0 0 

Scenario 4 0,40 0,40 0,05 0,05 0,05 0,05 

Scenario 5 0,03 0,03 0,24 0,24 0,24 0,24 

Scenario 6 0,15 0,15 0,18 0,18 0,18 0,18 

Scenario 7 0,05 0,05 0,10 0,70 0,05 0,05 

Scenario 8 0,03 0,03 0,03 0,03 0,80 0,10 

The values of Table 2 are used for calculating the characteristic function in equation 6. 

As can seen by the same table there are eight scenarios. In total we will perform eight 

different simulations. The sum of all weights in all scenario is equal to 1. For scenario 1 the 

weight is the same in all attributes. The other seven scenarios are used to understand the 

weight each attribute will have on the formation of coalitions. In scenarios 2 and 3 it is given 

the maximum importance to the flexibility and price respectively. The scenario number 4 

presents a division of the importance between 𝑤1 and 𝑤2, but always considering the other 

attributes with smaller importance. The scenario 5 is a balance scenario similar to baseline, 

although the 𝑤1 and 𝑤2 have a little higher importance. The scenario 6 is very similar to 

scenario 1 but the 𝑤3 to 𝑤6 have a higher minimal value difference compared to 𝑤1 and 𝑤2. 

Scenario 7 consider a higher value of 𝑤4, which means that the location attribute is the most 

important. The facility type attribute has the higher importance on scenario 8 with the 𝑤6 as 

a higher weight value.  

Regarding the algorithm setting for HyDE-DF†, the parameters were chosen according to 

other studies [17]. In fact, HyDE-DF is a self-adaptive parameter version but initial values 

for 𝐹𝑖 and 𝐶𝑟 where set to 0.5. The size of population was set to 𝑁𝑃 = 10 and 500 iteration 

were selected in each experiment.  

 
† HyDE-DF implementation is available at: https://fernandolezama.github.io./publication. 
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3.2  Results  

This subsection presents the results. Considering the behaviour of the metaheuristics we 

perform 30 trials for each scenario presented in 2 in order to obtain statistical significance in 

the results. Table 3 presents the results for objective function presented in equation 1 

considering all scenarios presented in table 2. 

Table 3. Optimization results. 

 Max Mean Std Mean Time 

Scenario 1 -0,119 -0,145 0,055 813,983 

Scenario 2 0,330 0,290 0,031 383,657 

Scenario 3 0,217 0,187 0,033 303,142 

Scenario 4 0,094 2,34E-05 0,065 367,281 

Scenario 5 -0,277 -0,370 0,113 489,260 

Scenario 6 -0,138 -0,163 0,043 504,635 

Scenario 7 -0,231 -0,312 0,100 678,636 

Scenario 8 -0,334 -0,411 0,104 825,087 

As can seen by table 3 there are presented four different values for each scenario. The 

Max, Mean and Std represent the maximum, mean and strand deviation respectively values 

of objective function considering the 30 trials. The scenario 2 presents the best maximum 

value and present also the best mean value, this scenario considered the value 𝑤1 = 1 which 

means that is only considered the value of 𝐹 to calculate the coalitions Shapley value. The 

scenario 2, 3 and 4 are the scenarios with greater objective function value. Regarding the 

standard deviation, the results of scenario 5 present the greater value with 0.11%. Considering 

the value of mean time, the scenario 8 presents the greater value and scenario 3 presents the 

lower value. The time values are measured in seconds, which mean that the 30 trials of 

scenario 8 took an average of 13 minutes to run. Table 4 present the coalition results for 

different scenarios, the baseline presents the coalitions results only considering in equation 1 

the ∑ (𝐼𝑖)𝑖∈𝑁𝐼
. 

Table 4. Coalition formation results. 

  Coalition Total 

Baseline {1,11}; {2,3,4,5,6,7,8,9,10}  2 

Scenario 1 {1,2,3,4,5,6,7,8,9,10}; {10}  2 

Scenario 2 {1,2,3,4,5,6,8,9,10,11}; {11}  2 

Scenario 3 {1,2,4,5,6,7,8,9,10}; {3,11}  2 

Scenario 4 {1,2,3,4,5,6,7,8,9,10}; {11}  2 

Scenario 5 {1,2,3,4,5,6,7,8,9,11}; {10}  2 

Scenario 6 {1,2,3,4,5,6,7,8,9,11}; {10}  2 

Scenario 7 {1,2,3,4,5,6,7,8,9,11}; {10}  2 

Scenario 8 {1,2,3,4,5,6,7,8,9,11}; {10}  2 

As can be seen, in table 4 the results for the number of members of each coalition number 

is always 2. There are differences in the results as can be seen by the coalition structures 

presented. In a baseline where the stdc is not included in the objective function, the optimal 

solution considers one coalition with Agents 1 and 11, and the other coalition aggregates the 

8

E3S Web of Conferences 239, 00016 (2021)
ICREN 2020

https://doi.org/10.1051/e3sconf/202123900016



rest of the agents. The coalitions structures of scenario 1, 5, 6, 7 and 8 are the same, the Agent 

10 constitutes one single coalition and the others all agents are the other coalition. In scenario 

2 and 4 the coalition structures results are equal, the Agent 11 is one single coalition and the 

other agents constitute the other coalition. In scenario 3 there is a coalition with Agent 3 and 

11 and the rest of the agents is the other coalition. With the results of the table 4 it is possible 

to observe that the Agent 10 and 11 have strong impact on the coalition results, due the 

constraint of equation 7. Therefore, the agents with lower flexibility quantity (Agent 1 to 9) 

have to merge with one of other two agents. By the results of the scenarios when is given 

more importance (greater attribute value 𝑤) to the flexibility (𝐹) or price (𝑃) the coalition 

present differences in the structures (scenario 2, 3 and 4). Table 5 presents the incomes for 

all agents grouped by the coalition structures present in table 4. 

Table 5. Incomes results. 

  𝐼𝑖 (EUR) 
∑ (𝐼𝑖)

𝑖∈𝑁𝐼

 

Baseline {0,010;0,174}; {0,008;0,009;0,014;0,014;0,014;0,006;0,006;0,006;0,149}  0,409 

Scenario 1 {0.009;0.009;0.009;0.015;0.014;0.015;0.006;0.007;0.006;0.159}; {0.161}  0,409 

Scenario 2 {0.009;0.008;0.014;0.014;0.014;0.006;0.006;0.006;0.146;}; {0.008;0.179}  0,409 

Scenario 3 {0.008;0.008;0.010;0.014;0.013;0.014;0.006;0.006;0.145;0.179}; {0.006}  0,409 

Scenario 4 {0.009;0.008;0.008;0.014;0.014;0.014;0.006;0.006;0.006;0.146}; {0.179}  0,409 

Scenario 5 {0.009;0.009;0.009;0.015;0.014;0.015;0.006;0.007;0.006;0.160}; {0.161}  0,409 

Scenario 6 {0.009;0.009;0.009;0.015;0.014;0.015;0.006;0.007;0.006;0.160}; {0.161}  0,409 

Scenario 7 {0.009;0.009;0.009;0.015;0.014;0.015;0.006;0.007;0.006;0.160}; {0.161}  0,409 

Scenario 8 {0.009;0.009;0.009;0.015;0.014;0.015;0.006;0.007;0.006;0.160}; {0.161}  0,409 

As can seen by table 5 the sum of all incomes is the same in all scenarios, but the value 

of remuneration per each agent is different when the coalition structure changes. When 

comparing scenario 1 when the 𝑤 is the same for all attributes with scenario 2 when only 

considering the attribute 𝐹 the Agent 11 that have the higher value of 𝐹 is alone in one 

coalition and the other are together, but the Agent 11 receives more incomes compared with 

the incomes received in scenario 1. Considering now the scenario 3 when considering a value 

of 𝑤2 = 1, which means only the price attribute is considered for Shapley value calculation, 

the agents with higher price (Agent 3 and 11) are in one coalition and both receive higher 

income values when compared with baseline and scenario 1 when the 𝑤’s are the same for 

all attributes.  

The incomes distribution in scenario 4 is the same of scenario 2, although the 𝑤’s have 

different values, the coalition structures is the same. This is possible because the price of 

flexibility for each coalition 𝑃𝑐  depends on the flexibility and price attributes (𝐹𝑖, 𝑃𝑖) of each 

agent. The incomes of scenarios 1, 5, 6, 7 and 8 are equal, due to the same reason explained 

above.  

Table 6 presents the results values for each 𝜙𝑖 of each scenario, the stdc for each coalition 

and the ∑ stdc𝑐∈𝑁𝐶
. The values of Shapley are different for each agent and for each scenario. 

The standard deviation for coalition (stdc) with only one agent is 0. Scenario 8 has the higher 

sum of stdc, which represents a great difference in agents Shapley value. 
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Table 6. Shapley Value and Coalition standard deviation results. 

𝝓𝒊 (Shapley Value) 𝐬𝐭𝐝𝐜 Sum 

Baseline - - - 

Scenario 1 {0.095;0.135;0.143;0.152; 0.289;0.322;0.594;0.780;1.108;0.689}; {1.702} {0,529}; {0} 0,529 

Scenario 2 {0.016;0.062;0.056;0.037;0.093;0.108;0.121;0.183;0.275}; {0.031;0.652} {0,189}; {0,004} 0,192 

Scenario 3 {0.035;0.039;0.230;0.064;0.070;0.117;0.253;0.376;0.593;0.274}{0.170} {0,080}; {0} 0,080 

Scenario 4 {0.052;0.095;0.093;0.109;0.157;0.217;0.370;0.471;0.660;1.025}; {0.706} {0,315; {0} 0,315 

Scenario 5 {0.125;0.169;0.183;0.192;0.381;0.409;0.765;1.011;1.439;2.207}; {0.790} {0,686}; {0} 0,687 

Scenario 6 {0.098;0.139;0.148;0.157;0.300;0.333;0.615;0.808;1.148;1.764}; {0.701} {0,548}; {0} 0,548 

Scenario 7 {0.108;0.178;0.195;0.176;0.336;0.358;0.741;0.924;1.303;2.083}; {0.869} {0,641}; {0} 0,641 

Scenario 8 {0.152;0.150;0.159;0.205;0.454;0.447;0.840;1.136;1.626;2.335}; {0.628} {0,743}; {0} 0,744 

4  Conclusions 

This paper proposes an optimisation methodology for coalition formation considering the 

fairness in flexibility market participation. The fairness of the coalition is measured taking 

into account the standard deviation of Shapley values within each coalition. The optimization 

problem is solved considering the Hybrid-adaptive Differential Evolution algorithm. With 

the analyses of the presented results we can see the influence of the attributes in coalition 

formation. The scenarios 1, 2, and 3 definition have a positive impact for results analyses, 

because the differences are visible, and the impact of attributes is easy to identify. The 

definition of the other scenarios could not draw significant conclusions. As future work we 

intend to explore measures of coalitions stability (e.g., Core) and compare with the results of 

this paper. 
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