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Abstract. At present, the main form of microgrid is AC grid. DC microgrids have received extensive 

attention and research with the rapid development of various DC power. The operation mode of the DC 

microgrid is divided into grid-connected operation and islanding operation. Islanding is formed after the 

circuit breaker tripped, which connects microgrid to large grid. Islanding operation can be divided into 

planned islanding and unplanned islanding. Unplanned islanding will cause certain harm to users and 

systems, so it is necessary to detect islanding accurately in the DC microgrid. This paper proposes an 

islanding detection method for DC microgrid based on random forest classification. Firstly, raw data is 

cleaned, extracted features and generated feature vector set. The extracted features include six islanding 

characteristic indexes, which consist of voltage, current, output active power and their first order backward 

difference on the DC bus side. Then, based on random forest classification, building the islanding detection 

model. Islanding detection model for DC microgrid can distinguish islanding event successfully and 

accurately. Based on weighted random forest classification, it can detect islanding event more accurately 

compared with decision tree classification when processing large amounts of data. 

1 Introduction  
Currently, DC microgrids are developing rapidly as 

distributed power supplies and a variety of DC power-

using devices are being used in a large number of 

microgrids[1]. 

DC microgrid operation is divided into two modes of 

operation: grid-connected and islanded[2-3], and when 

the circuit breaker of the connection between the 

microgrid and the larger grid is tripped, islands are 

formed. Island operation can be divided into planned and 

unplanned islands[4]. Unplanned islands can cause some 

harm to the users or the system[5], so accurate island 

detection is essential for the safe and stable operation of 

DC microgrids.  

Traditional islanding detection methods mainly include 

local active, local passive, and remote methods[6]. These 

methods have large detection blind zones, affecting the 

power quality of inverter output, high cost and complex 

design problems. Data mining technology has two main 

functions: one is to query the historical operating 

information of the power system, and the other is to 

establish potential links between query data to address 

siloed predictions, decision making, etc.  Therefore, 

scholars at home and abroad have conducted different 

levels of research on data mining techniques. The 

reference[7] proposes an islanding detection data mining 

system, which consists of three steps, including key 

feature identification, base learner and meta-learner, to 

improve the accuracy and generalization of AC 

microgrid islanding detection. The reference [8] employs 

a data mining C4.5 decision tree to solve the problem of 

islanding detection in AC microgrids. Reference [9] 

proposed a random forest classifier-based anomaly data 

detection method to achieve anomaly detection and 

anomaly data repair function. The reference [10] trains 

five different classifiers for the problem of islanding 

detection in AC microgrids, with a random forest 

classifier capable of Detecting silos with high accuracy 

and reasonable time. Random forest is an integrated 

learning method for multiple decision trees, which can 

overcome some of the shortcomings of a single decision 

tree, with good scalability and parallelism[11], which is 

more widely used in many fields, such as remote sensing 

data analysis[12], biochips[13], speech identification[14], 

cheating webpage detection and complete network 

detection[15]. It has a good application in islanding 

detection in distributed power generation systerms[16]. 

In this paper, an islanding detection method for DC 

microgrid based on random forest classification is 

proposed. First, a DC microgrid simulation model was 

built to obtain state information such as voltage, current, 

and output active power on the DC bus side of the 

system in grid-connected and islanded operation mode, 

and data cleaning was performed. Then, key features 

reflecting the islanded operation of the DC microgrid are 

extracted to generate a set of feature vectors. Finally, a 

random forest classification-based method for DC 

microgrid islanding detection is proposed, which is 

shown to improve the accuracy of DC microgrid 
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islanding detection. Compared with decision tree 

classification under different scales of data and weighted 

random forest, the random forest classification model 

considering the weight can detect islands more 

accurately, which has certain scalability and practical 

significance. 

2 DC Microgrid Islanding Operation 
Feature Extraction  
DC microgrid islanding detection mainly includes data 

acquisition, data cleaning, islanding feature extraction 

and random forest classification. Island features are 

intrinsic to island operation and are directly related to the 

accuracy of island detection, so extracting valid island 

features is key to island detection. 

At the moment the islanding occurs, the AC grid changes 

active power , reactive power , frequency , voltage 

, and power factor . Therefore, the key features of 

islanding detection are:  and its rate of change ,  

and its rate of change ,  and its rate of change , 

 and its rate of change  [17-18]. To summarize 

the existing studies, the common features of islanding 

detection in AC power grids are shown in Table 1.  

Table 1. Common features of islanding detection for AC 

power grid. 

Features Symbol Features Symbol 

active 

power 
 active power’s rate of change 

 

frequency  frequency’s rate of change 

 

voltage  voltage’s rate of change 

 

power 

factor 
 

power factor’s rate of change 

power factor 
 

The DC microgrid only needs to consider active power 

balance and stable DC bus voltage, but not phase, 

frequency, and reactive power [19-20], so the paper selects 

six islanding characteristics indicators such as DC bus 

side voltage, current, output active power, and their 

respective first-order backward differential as detection 

features, as shown in Table 2. 

Table 2. Six key features of islanding detection for DC 

microgrid. 

Features Symbol Features Symbol 

voltage 
 

voltage’s respective first-order 

backward differential 
 

current 
 

current’s respective first-order 

backward differential 
 

output 

active 

power 

 

output active power’s respective 

first-order backward differential  

The extraction of key features of DC microgrid islanding 

operation includes the following steps, as shown in 

Figure 1. 

 

Fig. 1. Islanding features extraction process for DC microgrid. 

2.1. Captions/numbering 

Build a DC micro-grid simulation model, and the DC 

bus side of the continuous voltage is , the sampling 

voltage is , for the sampling period, defined as 

. The voltage data for grid-

connected and islanded operation of the DC microgrid 

can be obtained. Similarly, you can get state information 

such as the DC microgrid bus-side current , output 

active power , AC-side voltage, current, output 

active power and reactive power and so on. And these 

data is stored. 

2.2. Data cleansing 

Estimating the similarity of each pair of samples using 

(Euclidean distance) [21-22], cleaning and merging the data, 

and handling duplicates values and outliers to improve 

the quality of the dataset. The Euclidean distance is 

calculated as follows 

2.3. Captions/numbering  

Captions should be typed in 9-point Times. They should 

be centred above the tables and flush left beneath the 

figures. 

 (1) 

where, -the Euclidean distance between the 

sample and the sample ;  -the number of sample 

dimensions; , -the dimensional information of the 

sample , . 

2.4. Feature extraction 

Six state quantities of voltage, current, output active 

power and their respective first-order backward 

differential are extracted from the cleaned data as DC 

microgrid islanding detection characteristics. The first-

order backward differential of voltage, current, and 

output active power are , ,  respectively, 

and are calculated as follows 
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       (2) 

where, , -the voltage on the DC bus at 

the moment and moment , , -

the current on the DC bus at the moment  and 

moment , , -the output active 

power on the DC bus at the moment  and moment 

. 

2.5. Generation of vector sets 

Determine the set of feature vectors, each of which 

contains , , , , ,  etc. 

six feature indicators. 

3 Random forest-based classification 
DC microgrid islanding detection 
The random forest consists of multiple mutually 

independent decision trees, which is an integrated 

learning method based on decision trees, and the random 

forest classification results are determined by the voting 

of all decision trees, which has a high accuracy and is 

able to process big data effectively, and therefore has 

good results in orphan detection. 

The paper develops the modeling using random forest 

algorithm on the basis of obtaining the indexes of DC 

microgrid islanding characteristics, and the modeling 

process is shown in Figure 2. First, the sample set 

containing six indicators , , ,  , 

,  of islanding characteristics was split into a 

training set and a test set. Then use the  method 

randomly selects multiple subsets of training samples 

 from the training sample set and 

models a decision tree for each subset separately. 

Combining the decision results from multiple trees, the 

final orphan detection model is derived by voting[23]. 

Sample 

set

Training 

set
Test set

Bootstrap Re-sampling

Training sample 

subset S1

Training sample 

subset S2

Training sample 

subset S3

CART Decision treef1(a) CART Decision treef2(a) CART Decision treefk(a)

Voted random forest 

classification model

Test

Randomly generate 

a subset  of training 

samples

 
Fig. 2. Modeling process of islanding detection for DC 

microgrid based on random forest 

3.1. Random selection of a subset of training 
samples 

The raw sample set consists of two types of data, DC 

microgrid grid-connected operation and islanded 

operation. The training set containing six indicators of 

islanding characteristics is divided into a training set and 

a test set according to 7:3[24-25]. Firstly, a n  sub-sample 

set was randomly selected from the training set by 

sampling method, and then a n  classification regression 

tree was constructed 

( classification and regression tree CART， )[26].  

The construction of each decision tree requires the 

random selection of F  of the M  island detection traits 

as a random feature variable to participating in the 

decision tree nodes splitting process. This method solves 

the overfitting problem arising from the construction of a 

decision tree and ensures the randomness of the 

construction of the decision tree.Where 

( )20 log 1F M  +                        (3) 

M  is the total number of island detection features. 

When M  is 6, randomly choose F  as 1 or 2. When 

decision tree randomly chooses 1 characteristic, =1F ; 

and when decision tree randomly chooses 1 

characteristics, =2F . 

3.2. Building the CART decision tree 

Based on the principle of Gini coefficient minimization, 

n  decision trees is constructed for each subset of 

random training samples using a CART  algorithm, 

creating a "forest"[27]. According to the reference[28] the 

number of decision trees is about 100 when the random 

forest classification performance is close to optimal, so 

in this paper 99 trees are selected decision tree to form a 

random forest. 

3.3. Voting on the results of silo testing 

The random forest model consists of a set of n  CART 

decision trees that are used to validate the accuracy of 

the model using test set data. The test samples a  are 

used as inputs to the random forest and the output of the 

k  tree is the 

      (4) 

then the output of the stochastic silvicultural 

classification model is 

( ) ( )
0,1 1

arg max
RF k

n

i k

f a f a i
= =

 
= =   

 
       (5) 

where, 
k

f -single decision tree classifier model; 
k

f -

single decision tree classification result, =0i  indicating 

that the prediction result is non-islanded, =1i  indicating 

that the prediction result is islanded; 
RF

f -random forest 

classification model output; n -total number of decision 

trees included in the random forest model. 

4. Experimental results and analysis 
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Application of  establishes a 

simulation model for DC microgrid. The model consists 

of five parts: AC main grid, inverter controller, line 

impedance model, DC circuit breaker, distributed 

generation, and a DC microgrid system and load model, 

is shown in Figure 3. 

DC/DC
DC 

load

AC 

load

Fan 

simulator

DC/DC
Lithium battery energy 

storage system

DC/DC
Photovoltaic power 

generation system

AC main 

grid

R

R

R

R

R

cb1

cb2

cb3

cb4

cb5

cb6

Inverter 

controll

er

DC 

microgri

d

Fig. 3. Topological of the typical DC microgrid 

The wind turbine simulator is used as the object of study. 

On the basis of guaranteeing the maximum power output 

of wind power generation and system power balance, the 

DC microgrid grid-connected operation, large island 

event, and small island event are simulated by switching 

action, respectively. As shown in Table 3. 

Table 3. Simulation events 

Type Switching Action 

Grid-

Connected 
— 

Large Island 
disconnect cb1：the DC microgrid is 

disconnected from the AC main power grid  

Small Island 

disconnect cb1 、cb2： the DC microgrid is 

disconnected from the AC main power grid and 

DC load 

disconnect cb1 、cb3：the DC microgrid is 

disconnected from the AC main power grid and 

AC load 

disconnect cb1 、cb5：the DC microgrid is 

disconnected from the AC main power grid and 

lithium battery energy storage system 

disconnect cb1 、cb6：the DC microgrid is 

disconnected from the AC main power grid and 

photovoltaic power generation system 

For grid-connected operation, large islanding events, and 

small islanding events, three operating states are 

simultaneously collected, including DC bus side voltage, 

current, output active power, AC side voltage, current, 

output active power, and output reactive power of the 

wind turbine simulator. 

Take the grid-connected DC microgrid operation and 

large island operation as an example, the blue part of the 

system simulation diagram shows the grid-connected 

operation state and the red part shows the large island 

operation state. When the simulation runs to 0.7s, the 

cb1 switch is disconnected and the DC microgrid enters 

large island operation. After 0.2s or 0.9s moment, the 

large island operation state enters steady state operation 

and collects the DC bus side voltage of the wind turbine 

simulator. Current, output active power changes, as 

shown in Figure 4. 

 

 

 
Fig. 4. Scatter diagram of voltage, current and output active 

power 

Compare the changes of each parameter in grid-

connected operation and large island operation, and 

select the state of the DC bus side in the interval =5μsdT  

from 0.7s to 0.9s. By simulating Table 4 simulation 

events, 240,000 sets of simulation data can be obtained. 

Each set of data contains status information such as fan 

simulator DC bus side voltage, current, output active 

power, AC side voltage, current, output active power, 

output reactive power and so on. 

Select the DC bus-side voltage, current, and output 

active power as raw data, and clean these data in 

MATLAB. KNN classification results of the classifier 

learner as an evaluation of the quality of the dataset 

indicators. The confusion matrix has 0 for non-islanded 

and 1 for islanded, and the 240,000 sets of data are 

cleaned to get the 223,780 groups data. Misclassified 

data were significantly reduced and the quality of the 

dataset improved, as shown in Figure 5. 
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Fig. 5. Confusion matrix before and after data clean 

The AUC values before and after data cleaning are 0.93 

and 0.97 respectively, so the cleaned data can be 

classified better, i.e. the data quality is higher. . The 

ROC curves before and after data cleaning are shown in 

Figure 6. 
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 Fig.6. ROC curves before and after data clean 

Select ( )U N , ( )I N , ( )P N , ( )U N , ( )I N , ( )P N , 

0 240000N   from the cleaned data. And these six 

sets of features are selected and combined to generate 

feature vector sets. The sample set contains 223,780 

feature vectors, of which 70% are randomly selected for 

the training set and the remaining 30% for the test set. 

The training set is used to train the random forest 

classifier and the test set is used to test the recognition 

rate of the completed trained model. The number of 

samples is shown in Table 4 and the test results are 

shown in Table 5. 

Table 4. Partitioning the sample set 

Set Number Of Samples 

Training 

Set 
156646 

Test Set 67134 

Total 223780 

Table 5. Classification results 

Type 
Total 

Number 
Correct Wrong Accuracy 

Islanded 55875 54880 995 98.22% 

Grid- 

Connected 11259 10562 697 93.81% 

From Table 5, it can be seen that the detection accuracy 

for islanding and parallel operation is 98.22% and 

93.81%, the total detection accuracy of random forest 

classification is 97.48%. respectively, methods based on 

random forest classification can be effective in detecting 

orphan islands. 

5. Experimental Comparison 

5.1 Comparison of random forest classification 
method and decision tree method 

Compare and analyze the random forest-based 

classification method with the decision tree method. 

Select sample datasets containing 180,000, 120,000, and 

60,000 groups for the test analysis and repeat the above 

steps, and the results of the analysis are shown in Table 6. 

Table 6. Performance comparison between the proposed 

algorithm and decision tree 

The Initial Data Set 

Contains The Amount 

Of Sample Data 

Accuracy % 

Random Forest 

Method 

Decision Tree 

Method 

240000 97.48 95.68 

180000 96.88 96.22 

120000 96.69 96.74 

60000 94.85 97.45 

As shown in Table 6, the larger the sample size of the 

dataset, the higher the predictive accuracy of the random 

forest classification detection model compared to the 

decision tree approach. 

5.2 Weighted random forest classification 
method 

In the random forest classification method, calculate the 

decrease value of the Gini coefficient of a feature index 

at the corresponding node, which is called DGini. The 

weight of the characteristic index can be obtained 

through solving and calculating the reduced value of all 

Gini coefficients in the forest, and taking the average. 

Calculated as follows 

G

=1

G

=1

D

Q =

D

n i

kij

i j

k m n i

kij

k i j




        (6) 

Where, Qk  is the weight of the k  indicator in the m  

indicators, which is the percentage of importance; m is 

the total number of characteristic indicators, =6m  in this 

article; n  is the number of overall trees in the 

construction of the random forest, =99n in this paper; t  

is the number of nodes in a single classification tree; 

GD kij
 is the reduction value of the Gini coefficient of the 

-thk  indicator at j  nodes on the -thi  tree. 

The above method of calculating the weights of feature 

indicators can effectively improve the generalization 

ability of the data set, and the data set can handle 

multiple types of data without standardization. 

Bring the complete training set sample data into the 

random forest model for training, use the self-detection 

function of the random forest model, and obtain the 
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results of the importance of each indicator according to 

the formula (8) at the same time. 

Table 7. The average Gini coefficient reduction value and 

importance degree  

Features 

Average Gini 

coefficient 

reduction 

Importanc

e 

percentag

e/% 

voltage 90.15 32.6 

current 15.76 5.7 

output active power 46.39 15.8 

voltage’s respective first-order 

backward differential 
77.71 28.1 

current’s respective first-order 

backward differential 
15.21 5.5 

output active power’s respective 

first-order backward differential 
34.01 12.3 

According to Tabel 7, voltage is the most important 

indicator, accounting for 32.6% of the importance of all 

indicators, which is shown in the status information 

comparison chart of grid-connected operation and island 

operation. The first order of voltage, the first-order 

backward difference of output active power, and output 

active power account for 28.1%, 15.8%, and 12.3%, 

indicating that these three indicators have a greater effect 

on islanding detection and can affect the detection result 

to a certain extent. It can be found that the influence of 

current on the detection result is much lower than the 

voltage characteristic index. 

For the generated feature vector group, each electrical 

feature index is given a weight value, and the weight 

distribution is 

 (7) 

Where, 

. 
After assigning weights to the feature vector set obtained 

before, the feature vector set is obtained. 

Similarly, the sample set contains 223780 feature vectors, 

of which 70% are randomly selected as the training set, 

and the remaining 30% are used as the test set. The 

training set is used to train the weighted random forest 

classifier, and the test set is used to test the recognition 

rate of the trained model. The test results are shown in 

Table 8. 

Table 8. Classification results 

Type 
Total 

Number 
Correct Wrong Accuracy 

Islanded 55875 54903 972 98.26% 

Grid- 

Connected 
11259 10553 706 93.73% 

As shown in Figure 7, it can be seen that in the weighted 

random forest model, the detection accuracy of isolated 

islands and grid-connected operation are 98.26% and 

93.73%, respectively. Compared with the unweighted 

random forest, the islanding situation’s detection 

accuracy of the weighted random forest model has 

increased by 0.04%. 

 
Fig.7. Comparison between weighted random forest and 

unweighted random forest 

6 Conclusion 

This paper proposes an island detection method for DC 

microgrid based on random forest classification and 

verifies the effect through simulation, resulting in the 

following main conclusions. 

1) The method proposed in the paper is capable of 

accurately detecting orphaned islands with an accuracy 

of 98.26%. This ensures the safe operation of the 

distribution network containing a large number of 

distributed power supplies. 

2) Compared to decision trees and random forest, the 

weighted random forest classification model has better 

generalization ability and can better detect siloed 

situations when dealing with large amounts of data. 

The follow-up research focus of the paper will further 

consider the influence of more factors including the 

number of random forest containing trees, the proportion 

of transform training set and test set on the islanding 

detection accuracy, and continuously improve the 

proposed islanding detection method for DC microgrids 

based on random forest classification. 
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