E3S Web of Conferences 243, 02010 (2021) https://doi.org/10.1051/e3sconf/202124302010

ICPEME 2021

Improved Genetic Algorithm Integrated with Scheduling Rules

for Flexible Job Shop Scheduling Problems

Muhammad Kamal Amjad"*, Shahid Ikramullah Butt' and Naveed Anjum!

!School of Mechanical and Manufacturing Engineering (SMME), National University of Science and Technology (NUST), Islamabad,

Pakistan

Abstract. This paper presents optimization of makespan for Flexible Job Shop Scheduling Problems
(FJSSP) using an Improved Genetic Algorithm integrated with Rules (IGAR). Machine assignment is done
by Genetic Algorithm (GA) and operation selection is done using priority rules. Improvements in GA

include a new technique of adaptive probabilities and a new forced mutation technique that positively
ensures the generation of new chromosome. The scheduling part also proposed an improved scheduling rule
in addition to four standard rules. The algorithm is tested against two well-known benchmark data set and
results are compared with various algorithms. Comparison shows that IGAR finds known global optima in
most of the cases and produces improved results as compared to other algorithms.

1 Introduction

Manufacturing scheduling deals with the decision
making problem of allocating a predetermined set of
resources to perform a set of activities such that the
activities can be completed in an optimal manner with
regards to a certain performance parameter.

Job Shop Scheduling Problem (JSSP) deals with the
sequencing of a certain number of operations on several
fixed machines with predefined task sequences and
processing times. Thus, operations can be performed on
a predefined set of machines only; however, different
sequences offer to optimize the overall schedules. The
Flexible Job Shop Scheduling (FJSSP) consists of two
sub-problems i.e. assignment and scheduling [1]. In
assignment part of problem, operations are assigned to
available machines, whereas, in scheduling part,
assigned operations are scheduled / sequenced on all
available machines. Scheduling objectives are used to
assess the optimality of a reference schedule.

Section 2 of this paper provides relevant literature
review for the FISSP using GA. Section 3 deals with the
problem formulation. Section 4 provides description of
the proposed GA used for solving the FISSP. Section 5
deals with the analysis of computational results and
Section 6 concludes the paper.

2 Literature review

Scheduling problems are known to be NP-hard [2],
whereby, it becomes virtually impossible for the exact
methods to provide the solution in a reasonable time.
Thus, approximate algorithms have been used
traditionally to acquire acceptable solutions.

* Corresponding author: kamal.amjad@smme.edu.pk

Genetic Algorithms (GAs) mimic the evolutionary
intelligent behaviour of nature for evolution of
generations based upon the rule of ‘survival of the
fittest’. GA has been used most commonly to solve the
JSSP out of the available artificial intelligence based
techniques [3]. Similarly, it has been pointed out that
pure GA based applications constitute 54.69% of the GA
based FJSSP literature [4]. This clearly identifies the
popularity and adaptability of the algorithm for solving
the FISSP.

Makespan minimization has been conducted mostly
in the literature as single objective optimization [4]. Qiao
et al [5] used adaptive crossover and mutation with
roulette wheel selection to minimize the makespan. Yang
et al [6] used Non-dominating Sorting Genetic
Algorithm (NSGA) for multi-objective optimization of
makespan, maximal workload, total workload and total
tardiness. They used an adaptive mutation method,
where they used smaller mutation rates at start of
evolution and bigger mutation rates at the end. Pan et al
[7] used an adaptive GA with two part operations and
machine representation chromosome for minimization of
makespan. Mutation, crossover and selection parameters
are adaptable according to linear interpolation
mechanism which generates the respective values for
each generation.

Kaweegitbundit et al [8] use hybrid scheduling rules
for machine selection part for minimization of mean
tardiness. Doh et al [9] conducted a comparative study
on 36 priority rule combinations (separately for machine
selection and operation sequencing) for the optimization
of makespan and other objectives in FJSSP environment.
The scheduling technique was tested against an
industrial system to show that Shortest Processing Time
(SPT) provided best results in all scenarios.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 243, 02010 (2021)
ICPEME 2021

https://doi.org/10.1051/e3sconf/202124302010

In this paper, new adaptive strategies have been
proposed for recombination operators and a modified
Most Work Remaining (mMWR) scheduling rule is also
developed. The algorithm is tested against two
benchmark problem sets of Kacem [10] and Fattahi [11].
Makespan (C,.a) is the optimization objective used in
this paper. Table 1 presents the notations used in this

paper.

Table 1. Notations

Symbol Description
N Total number of jobs
M Total number of machines
L Total number of sequences
i Index of i’ job out of N
Jio Total number of operations of i’ job
i Index of j operation out of Ji,
Oy Jj" operation of i job
Qj Set of available machines for Oj
k Index of & machine out of Q;
Mk k™ machine out of M
Pijk Process time of O;; on Mj
Tijk Release time of O on My
tijk Start time of Oy on Mk
Eiji End time of O; on M
Ck Completion time of current process on Mx
Sk Set of operations on M;
nij Sequence number of Oy
Uy Number of machines available for Oj;

3 Problem formulation

FISSP can be represented as a set of N jobs to be
scheduled on a set of M machines such that J = [J}, J,,
Js, oo Inl, M=[M;, M>, M;, ..., My]. Each job J; consists
of predefined operations Oj. Total number of operations
for job J; can be denoted by Ji,. Each operation O; can
be performed on any of machines M; € M. Py is the
processing time of operation O; on machine M;. In this
scenario, the total number of operations of all jobs can
be represented as L =) Jio [12]. Now, a sequence
number nj; is assigned to every operation Oj; such that:
n;j; =Z§c_:11 xo TJ)
Other constraints of FJSSP are as follows:
i. Each resource is available at the start of the problem
search.
ii. Only a single operation can be performed on each
machine on a given time.
iii. Operations are executed in a predefined sequence.
iv. There is no interruption once an operation is started.

4 Proposed algorithm

An Improved Genetic Algorithm integrated with Rules
(IGAR) is proposed to solve the assignment part and
scheduling is done using priority rules. Algorithm takes
problem as input; solves it using genetic algorithm and
priority rules and displays Gantt chart with optimized
makespan as output. Fig. 1 shows the flow chart of

complete algorithm.
START
Problem Input /
Preprocessing

Routing by GA

Random population Adaptive two point
initialization crossover

| Hybrid selection H Adaptwe.forced |
mutation

Scheduling by Priority Rules

| Apply SPT, LPT, MOR, MWR, mMWR |

Not exceeded————————*

Best makespan Generate makespan
by each rule

o of Generations
= maxGeneration?

Best Cmax <=
OptimSol or LB2

st Exceeded

(Generate Gantt Chart

END

Fig. 1. Improved Genetic Algorithm integrated with Rules
(IGAR)

4.1 Routing by Genetic Algorithm

GA has been used for routing of jobs on available

machines. Following two improvements have been

incorporated in GA part of the algorithm.

i. Proposed GA uses an adaptive technique to
calculate crossover and mutation probabilities based
on complete population fitness.

ii. An improved forced mutation technique has been
proposed that positively ensures the generation of
new chromosome during mutation process.

Chromosome representation proposed by Zhang [13]
has been used in which every gene contains information
of machine assignment for a particular process. Two-

Point Crossover (TPX) technique has been used whereby

two random chromosomes are selected from previous

population as parents. Crossover points are randomly
generated in range of [1, L]. Conventionally, crossover
probability is kept high to explore more and more search
space. Here, it is an adaptive parameter that depends
upon the convergence of population to any local optima.

As population converges, crossover probability starts

increasing to maintain the diversity of algorithm around

E3S Web of Conferences 243, 02010 (2021) https://doi.org/10.1051/e3sconf/202124302010

ICPEME 2021

the local optima by using the relation (Ft/maxFt);
where Ft is the fitness of the population.

A new forced mutation technique has been proposed
based upon the concept of flexible genes that ensures the
diversity of population in search space in a better way. A
flexible gene can be defined as the gene that can have
more than one possible value i.e.U;; > 1. Flexibility
index (f) can be defined as the average number of
machines per operation as shown below.

Z?I=1 E§l=o1 Uij

f=mmE @)

Considering the problem flexibility level, following
two rules are proposed to ensure the forced mutation.

i. Mutation shall be performed on any random flexible
gene instead of any random gene.

ii. While changing the value of gene, selected for
mutation; new value shall be selected from
remaining available options for that gene instead of
all possible options.

The probability of mutation is also adaptive as of
crossover. When GA starts converging to local minima;
values of minimum fitness and maximum fitness become
closer and their ratio increases. Thus, mutation
probability increases to maintain the diversity of
population in search space. High value of mutation
probability may generate too much instability in the
convergence of GA, but stability of convergence has
been managed by improving the selection process to
40% elitism and 60% roulette wheel. Table 2 presents
the pseudocode for forced mutation algorithm.

Table 2. Forced Mutation Algorithm

function Forced-Mutation (chrom,U;;) returns mutChrom
N « count U;; > 1 i.e. no. of flexible genes
R « random natural number from 1~N
n « Ind(R) i.e. index of desired flexible gene in chrom
gij < chrom(n) i.e. value of desired gene
options « 1~U;;(n)i.e. available options at nth gene
options <Remove-Value(options,g;;), remove already
availed option from options
R «a random natural number from1~length(options)
chrom(n) « options(R), random selection from
remaining options
mutChrom < chrom
Return mutChrom

4.2 Scheduling by Priority Rules

Fitness function generates schedules using following
priority rules.

i. Shortest Processing Time (SPT)

ii. Longest Processing Time (LPT)

iii. Most Operations Remaining (MOR)

iv. Most Work Remaining (MWR)

v. Modified Most Work Remaining (nMWR)

SPT and LPT use P;j;, for deciding the priority of any
job. MOR schedules the job with most operations
remaining on priority. Remaining operations (OR;;) after
any operation O;; of job J; can be calculated as J;, — j +
1. In MWR, job with most work remaining is scheduled

on priority. Remaining work for any operation O;; of job
Ji can be calculated as foj Pk’ . Here, k' is the

machine index assigned to O;, in given chromosome.

In mMWR, it has been proposed to use average of
all processing times of an operation; available for
different machines, thus making it independent of
machine assignment. Moreover, MWR is inclined to a
schedule based on predefined assignment; whereas,

mMWR defined priority of a process or job
independently.
1 Uij
avgPy = 5= xts Py ©)
mWRy; = Y12, avgP, “

Here mWR;; is the modified work remaining for
operation O;; of job J;. Table 3 presents the pseudocode
for scheduling.

Table 3. Scheduling Algorithm

function Get-Schedule(chrom,Problem) returns schedule
buf fer «Initialize an empty array of lengthM. Operations
to be scheduled on M,
Cy «<Initialize with zeros, an array of lengthM. Time of
availability of k*"machine.
for each 0;; do
n < Y&b Joo + 1, operation sequence number
gn < chrom(n), gene value at n®*index
k< Qg , & machine id out of machines for 0; §

buffer(k) < O;;
while lempty(buf fer)do
cbuf fer « buffer, take a copy of buf fer
for each non-empty chuf fer index kdo
List < cbuffer(k), list of operations on M
List’ « list of previous operations of List
k' « machine assignment for List'in chrom
Cy «<availability time of M,
0;; « operations from List for which €y < G
if empty(0;;) do
0;; «<Apply-Priority-Rule(List)
if 0;; is 1** operation of J;then do

tijie < Ci
else do
tijie < max(Cy, Eyjryer)
Eiji < tijr + Piji
Cr < Eiji

List « remove 0;; form List

buffer(k) « List
Iflequal(j, J;,)for O;; do
n < Yt J., +Jj + 1, operation sequence number
gn < chrom(n), gene value at n**index
k< Q. & machine id out of machines for 0; §

buf fer(k) < Oj¢j+1y
cbuffer « buffer, take a copy of buf fer
schedule « [tijk Eijk]

return schedule

Makespan is calculated from all these five
schedules. The algorithm terminates if any of the
following conditions is fulfilled.

E3S Web of Conferences 243, 02010 (2021)
ICPEME 2021

https://doi.org/10.1051/e3sconf/202124302010

i. Best C,u among the population is less than or equal
to optimum solution (optimum solutions of
benchmark problems according to Behnke [14] have
been used as termination condition).

ii. Maximum number of generations is achieved.

iii. Best Cmax among the population is less than or
equal to lower bound (LB) of the problem,
calculated using equation (5) to (7).

Pi,j = mm(Puk) A MkE-Qij (5)
P =¥l P, V 0y (6)
LB = max P/ 7

1<isN

5 Results and discussion

The efficacy of the algorithm is tested against the
benchmark data sets of Kacem and Fattahi. Table 4
shows close coherence of results of proposed algorithm
with ILOG Constraint Programming Engine [14] for
Kacem instances. A limited comparison is carried out
here, as the results of ILOG are already reported as
optimal minima. Percentage deviation is calculated for
each comparison by using the following equation.

Reference—Achieved

Dev(%) = x 100 0

Reference

Table 4. Results for Kacem Instances

CpP
Problem IGAR
Chnax DeV(%)
Kaceml 11 11 0
Kacem?2 11 11 0
Kacem3 7 7 0
Kacem4 14 12 -16.7

The results of IGAR for Fattahi problem set are
compared with results obtained by two search based
algorithms [11], a selected GA approach [15], a Mixed-
Integer Linear Programming (MILP) approach [16] and
ILOG Constraint Programming Engine [14] as reported
in Table 5. Fig. 2 presents the Gantt Chart of MFJS7. It
is evident that IGAR produces superior results as
compared to other algorithms and remains comparable
with ILOG.

Table 5. Comparison of IGAR with other algorithms

SFJIS8 253 253 256 253 253 253

SFIS9 210 210 210 210 210 210

SFJS10 516 516 516 516 516 516

MFIJS1 468 469 469 468 468 468

MFJS2 448 482 468 448 446 446

MFIS3 468 533 538 466 466 466

MFJS4 554 634 618 554 564 554

MFIJSS 514 625 625 514 514 514

MFJS6 634 717 730 634 635 634

MFJS7 881 964 947 881 935 931

MFJS8 884 970 922 891 905 884

MFJS9 1097 1105 | 1105 | 1094 | 1192 1070

MFJS10 | 1275 1404 | 1384 | 1286 | 1276 1208

H/TS | H/SA | GA MILP | CP
Problem | IGAR (1] (1] [15] [16] (14]
SFJS1 66 66 66 66 66 66

SFJS2 107 107 107 107 107 107

SFJS3 221 221 221 221 221 221

SFIs4 355 355 355 355 355 355

SFISS 119 119 119 119 119 119

SFIS6 320 320 320 320 320 320

SFJS7 397 397 397 397 397 397

Cmax = 881
T T

Machines
=
=

0 100 200 300 400 500 600 700 800 900
Time

Fig. 2. Gantt Chart of MFJS7

Fig. 3 shows distribution of makespan for initial
population and 20" generation to evaluate the
convergence scheme of the algorithm. It is observed that
population is randomly dispersed at the initial stage and
then gradually some of the individuals start converging
at best makespan due to elitism selection criteria.
Remaining individuals follow Gaussian distribution due
to roulette wheel selection criteria based on cumulative
fitness of all chromosomes.

Fig. 4 shows the convergence pattern of minimum,
maximum and average makespan of each generation for
Kacem-4 problem up to 80 generations. It also shows the
best rule that generated minimum makespan in each

generation.

Initial Population 20" Generation

120

120

100 100

ffffffffff
| Gaussian distribution
| effect due to

80 80

60 60

No of Individuals

1500 2000 2500 3000
Makespan

0 S 0
1000 1500 2000 2500 3000 1000

Makespan

Fig. 3. Population Distribution

E3S Web of Conferences 243, 02010 (2021)
ICPEME 2021

https://doi.org/10.1051/e3sconf/202124302010

200 T T T T T T T

—e— Avg Cmax
—e— Min Cmax
150 —&— Max Cmax |

2
mMWR
MWR
MOR
LPT
SPT - —=o— Rule that Estimated Best Cmax |

0 10 20 30 40 50 60 70
Generations

Fig. 4. Population Convergence for Instance-4 of Kacem

6 Conclusion

An improved genetic algorithm integrated with
scheduling rules has been proposed in this study for
optimization of makespan in the FISSP environment.
The GA uses an adaptive methodology for crossover and
mutation probabilities to ensure maximum search space
evaluation and restrain premature convergence. An
improved mutation technique is also proposed to ensure
generation of new chromosomes. Simulation studies are
conducted on benchmark data of and results are
compared. A positive mean percentage improvement has
been obtained for IGAR as compared to other algorithms
which confirm the adequacy of the algorithm. Future
research may address the inclusion of other rules in the
algorithm and implementation of the algorithm on
industrial setups.

References

1. LA. Chaudhry and A.A. Khan, International
Transactions in Operational Research, A4 research
survey: review of flexible job shop scheduling
techniques. 41, (2015).

2. M. Chen and J.-L. Li. Genetic Algorithm Combined
with Gradient Information for Flexible Job-shop
Scheduling Problem with Different Varieties and
Small Batches. in MATEC Web of Conferences.
2017. EDP Sciences.

3. B. Calis and S. Bulkan, Journal of Intelligent
Manufacturing, 4 research survey: Review of Al
solution strategies of job shop scheduling problem.
26, 961-973, (2015).

4. M.XK. Amjad, S.I. Butt, R. Kousar, R. Ahmad, M.H.
Agha, Z. Faping, N. Anjum, and U. Asgher,
Mathematical Problems in Engineering, Recent
Research Trends in Genetic Algorithm Based
Flexible Job Shop Scheduling Problems. 2018, 32,

(2018).

10.

13.

14.

15.

16.

W.L. Qiao, Qiaoyun, Solving the Flexible Job Shop
Scheduling Problems Based on the Adaptive Genetic
Algorithm, in International Forum on Computer
Science-Technology and Applications IFCSTA '09),
Z. Qihai, Editor. 2009. p. 97-100.

J.JJ. Yang, L. Y.; Liu, B. Y., The improved genetic
algorithm for multi-objective flexible job shop
scheduling problem, in Applied Mechanics and
Materials. 2011. p. 870-875.

Y.Z. Pan, W. X,; Gao, T. Y.; Ma, Q. Y.; Xue, D. J.,
An adaptive Genetic Algorithm for the Flexible Job-
shop Scheduling Problem, in IEEE International
Conference on Computer Science and Automation
Engineering (CSAE). 2011. p. 405-409.

P. Kaweegitbundit and T. Eguchi, Journal of
Advanced Mechanical Design, Systems, and
Manufacturing, Flexible job shop scheduling using
genetic algorithm and heuristic rules. 10, (2016).

H.-H. Doh, J.-M. Yu, J.-S. Kim, D.-H. Lee, and S.-
H. Nam, International Journal of Production
Research, A priority scheduling approach for
flexible job shops with multiple process plans. 51,
3748-3764, (2013).

LLH. Kacem, Slim; Borne, Pierre, Mathematics and
Computers in Simulation, Pareto-optimality
approach for flexible job-shop scheduling problems:
hybridization of evolutionary algorithms and fuzzy
logic. 60, 245-276, (2002).

. P. Fattahi, M. Saidi-Mehrabad, and F. Jolai, Journal

of Intelligent Manufacturing, Mathematical
modeling and heuristic approaches to flexible job
shop scheduling problems. 18, 331-342, (2007).

. M.K. Amjad, S.I. Butt, N. Anjum, I.A. Chaudhry, Z.

Faping, and M. Khan, Advances in Production
Engineering & Management, A layered genetic
algorithm with iterative diversification for
optimization of flexible job shop scheduling
problems. 15, 377-389, (2020).

G.G. Zhang, Liang; Shi, Yang, Expert Systems with
Applications, An effective genetic algorithm for the
flexible job-shop scheduling problem. 38, 3563-
3573, (2011).

D. Behnke and M.J. Geiger, Test Instances for the
Flexible Job Shop Scheduling Problem with Work
Centers. 2012, Universititsbibliothek der Helmut-
Schmidt-Universitiat: Hamburg.

M. Zandieh, 1. Mahdavi, and A. Bagheri, Journal of
Applied Sciences, Solving the Flexible Job-Shop
Scheduling Problem by a Genetic Algorithm. 8,
4650-4655, (2008).

C.0. Ozgiiven, Lale; Yavuz, Yasemin, Applied
Mathematical Modelling, Mathematical models for

job-shop scheduling problems with routing and
process plan flexibility. 34, 1539-1548, (2010).

