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Abstract. Trusses are common structural elements in many industrial and civil buildings. The article 
describes the approach to planar trusses reliability analysis in case of limited statistical data. The proposed 
approach can be used when it is complicated to determine a cumulative distribution function for design 
loads and physical/mechanical properties of the material of structural elements. The proposed method for 
structural reliability analysis requires only estimates of mathematical expectations and standard deviations. 
The article also presents the equation for planar truss reliability assessment as a system of structural 
elements. The result of a planar truss reliability analysis is obtained at an interval of non-failure 
probabilities. If the resulting reliability interval is too wide for decision-making, it is necessary to improve 
the quality of statistical data for a more accurate assessment of reliability (non-failure probability). 

1 Introduction  
Planar trusses are common structural elements in many 
industrial and civil buildings [1–5]. The issues of 
reliability are of high priority in various industries [6–
10] and it is highly relevant for construction industry, so 
development and modernization of approaches to trusses 
safety assessment is an actual scientific problem because 
there are some cases of trusses failure caused by errors 
of structural engineers in recent years [11,12]. 

As noted in [13], the analysis and design of structures 
based on reliability theory is a topic that has recently 
been seriously considered. This attention is associated 
with the random nature of the structural parameters, such 
as material properties, external loads, geometric 
characteristics of the cross-section of members, 
geometric dimensions of structures, and so on. Using 
reliability theory in structural systems, the uncertainties 
caused by the statistical nature of the structural 
parameters can be introduced as mathematical equations, 
while the safety and performance considerations are 
applied quantitatively in the design process [13]. 

The article [13] presents the approach to structural 
reliability analysis of truss structures with natural 
frequency constraints using metaheuristic algorithms. 
The paper [14] describes the reliability-based evaluation 
for concrete-filled steel tubular (CFST) truss under 
flexural loading. Reliability analysis is conducted to 
calculate reliability indexes in respect to different 
resistance factors under various load cases. 

This article presents the probabilistic approach to 
structural reliability analysis of planar trusses. The 
“Molodechno” type truss (Fig.1) will be considered as an 
example. 

 
Fig. 1. Example of “Molodechno” planar truss with a random 
(stochastic) load. 

2 Methods 
The stress analysis of a planar truss can be performed 
using classical approaches, such as the moment point 
method (Fig. 2). 

 
Fig. 2. The example of the moment point method in a planar 
truss structural design. 
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where jiN −
~  is an internal force in the i-j truss bar; h is a 

truss height; jil −  is a length of the i-j truss bar. 

From eq. (1) it can be seen that an each force jiN −
~  

can be represented as: 

 ( ) =− PPN ji
~~~ ,  

where   is a geometrical coefficient of a truss shape. 
The limit state condition for every structural element 

in a planar truss can be presented as: 

 ( ) ultjiji NPN ,
~~~
−−  , (2) 

where ultjiN ,
~
−  is an ultimate force for i-j structural 

element in a planar truss. 
An ultimate force for i-j structural element can be 

determined by different limit state criteria. 
For example, for the truss bar strength criteria: 

 ( ) , ,i j i j ult s ultN P N A− − = % % % % ,  

where A is a bar cross-section area; ults,
~  is an ultimate 

stress (the random variable). 
For a bar buckling criteria: 

 ( ) , ,i j i j ult s ultN P N A − − =  % % % % ,  

where   is a buckling factor. 
A random variable is characterized by a distribution 

function. Probabilistic cumulative distribution functions 
are used in the classic structural reliability theory. In 
case of limited statistical information, boundary 
probability functions are used. Such functions are called 
probability box or p-box [15]. 

The papers [15,16] define the bounds of a free p-box 
by the two-sided Chebyshev’s inequality [17]: 
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where Xm  is an expected value (a mathematical 
expectation); XS  is an standard deviation. 

The advantage of this probability box is an 
applicability in the presence of statistical estimates of the 
expected value Xm  and standard deviation XS . In this 
case there is no need to test the statistical hypothesis 
about the distribution function (Pearson's chi-squared 
test, for example). However, the result of the reliability 
analysis will be presented as an interval, not as a discrete 
value. 

Tighter bounds can be obtained by using one-sided 
Chebyshev’s inequalities and knowledge about the 
minimum x  / maximum x  value of X  [16]: 

 ( )
( )

( ) ( )
( )

2

2

2 2

2 2 2

0, /

1 1 / ,

( ) / /

1/ 1 / ( ) , /

1,

X X X

X
X X X X X X

X X X X X

for x m S m x

b a c b a

F x for m S m x x m S m x

S x m for m S m x x x

for x x

  + −

  − + − − =  + −   + −

  + − + −   
 

, (5) 

 ( )
( ) ( )

( ) ( )
( )

2 2 2

2

2 2

2

0,

1/ 1 ( ) / , /

1 / 1 ,( )

/ /

1, /

X X X X X

X

X X X X X X

X X X

for x x

x m S for x x m S m x

b ab c aF x

for m S m x x m S m x

for x m S m x




 + −   + −  
 − − + −= 


+ −   + −


 + −

, (6) 

where  xxx , ; parameters: ( ) ( )xxxxa −−= / , 

( ) ( )xxxmb X −−= /  and ( )22 / xxSc X −= . 

3 Results 
The functions (3) and (4) form p-boxes that cover the 
true probability distribution function (PDF) of a random 
variable. For example, assume that the following 
statistical estimates were obtained for the force in the 
truss bar: 20=Xm  kN, 5.1=XS  kN. Then the p-boxes 
by (3)-(4) and (5)-(6) equations form an epistemic 
uncertainty area (Fig. 1). 

 
Fig. 3. The PDF area formed by p-box (5)-(6). 

As can be seen from Fig. 3, the probability 
distribution functions (5)-(6) form the tighter p-box. So, 
the equations (5)-(6) can be used for the random 
variables ( )PN ji

~~
−  and ults,

~ . 

The limit state condition (2) can be presented as: 

 YX  . (7) 
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Boundaries of failure probability Q can be estimated 
for boundary distribution functions using the following 
equations: 
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where 
dx
xFdxf X

X
)()( =  is the probability density 

function for )(xF X . 
The non-failure probabilities can be calculated as 

 QPQP −=−= 1,1 . 

The table with reliability intervals for truss bars can 
be formed for a plane truss. Table 1 is an example of 
such table. 

Table 1. Reliability of planar truss elements. 

Planar truss element 
(Fig. 1) 

P  P  

1-2 0.9942 0.9989 
1-3 0.9992 0.9999 
2-3 0.9942 0.9989 
2-4 0.9967 0.9993 
3-4 0.9975 0.9995 
3-5 0.9970 0.9990 
4-5 0.9975 0.9995 
4-6 0.9953 0.9988 
5-6 0.9975 0.9995 
5-7 0.9970 0.9990 
6-7 0.9975 0.9995 
6-8 0.9967 0.9993 
7-8 0.9942 0.9989 
7-9 0.9992 0.9999 
8-9 0.9942 0.9989 

4 Discussion 
The planar truss reliability can be represented as a 
sequential system in terms of the reliability theory. In 
classic reliability theory, the next equation is used for 

reliability assessment of a sequential system: 
=

n

i
iP

1
, 

where iP  is a non-failure probability of i-th element in 
system. In case of limited statistical data, a result of the 
structural reliability analysis is presented in the interval 
form, as noted above. Then, the truss reliability 
assessment as a mechanical system can be provided 
using the following equation: 
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where iP  and iP  are lower and upper bounds of pile 
non-failure probability by i-th element of a truss. 

The advantage of equations (10) is also the ability to 
use them in the absence of statistical data on the 
dependence (independence) of elements in the system.  

For statistical data in Table 1, the following bounds 
can be obtained: 

 9479.0)115(9479.14)1(,0max
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=−−=
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 9988.0)min( == iPP .  

The reliability of planar truss is [0.9479; 0.9988]. If 
this interval is too wide to make a decision about the 
level of truss safety, then the quality of statistical 
information should be improved: probability functions of 
distributions should be refined, the number of control 
samples should be increased, etc. 

5 Conclusion 
1. The article describes the approach to a planar truss 
reliability analysis in case of limited statistical data about 
design loads and mechanical properties of truss material. 

2. The result of a planar truss reliability analysis is an 
interval of non-failure probabilities. If the resulting 
reliability interval is too wide for decision-making, it is 
necessary to improve the quality of statistical data for a 
more accurate assessment of reliability (non-failure 
probability). 

3. The numerical example is given for the planar 
truss reliability analysis as a mechanical system. 
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