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Abstract: In order to study the quality control and evaluation methods of self-compacting concrete (SCC) 
pumping process in Shenzhen-Zhongshan Bridge and similar projects, sample test is performed on 
self-compacting concrete mixture collected from the pumping field of the E1-E4 steel shell immersed tube; 
Then a database base on relationship between the variation parameters and the target performance is 
established. On this basis, the Grey system theory is adopted to analyze the parameter sensitivity of the SCC 
pumping performance to the different kinds of variables. The results show that variables are related to target 
performance and some of the variables have a significant influence. Using the powerful data mining 
capability of support-vector machine and Bayesian statistical inference in the case of uncertain exact 
mathematical relationship between independent variables and dependent variables, implicit and explicit 
prediction models of variation of SCC pumping performance are respectively established by pumping 
distance, number of elbows, pumping time and environmental temperature as the control parameters. Finally, 
the comparisons between the measured data and calculation result prove that both models have good 
prediction accuracy and stability. 

1 INTRODUCTION 

The Shenzhen-Zhongshan Bridge is a world-class 
megaproject integrating “super-large span 
bridge-artificial island-undersea immersed tube 
tunnel-underwater interchange”. The traffic scale adopts 
two-way 8-lane technical standards. The tunnel section is 
6845 m in total length, the pipe section is 5035 m long 
and consists of 32 pipe sections (E1～E32) and 1 final 
joint. The immersed pipe adopts a steel shell concrete 
tube section structure with two holes and one pipe gallery. 
This kind of structure not only has good load bearing and 
deformation capacity, waterproof and construction 
performance, but also has good economic benefits. The 
cross-sectional size of the standard pipe section is 46 
m×10.6 m, of which the E1 pipe section is 123.5 m long, 
and the remaining pipe sections are standard pipe 
sections 165 m long. The Shenzhen-Zhongshan Bridge 
uses high-flow SCC with C50 strength grade, totaling 
about 670,000 m3, and uses pumping pipelines to 
transport the concrete into the steel shell to complete the 
pouring. 

SCC has excellent fluidity and homogeneity. Without 
any vibration or compaction measures, it can be injected 
into the mold and wrap the steel bar only by its own 
gravity and achieve the ideal self-compacting effect. The 

self-compactness of SCC can not only effectively 
improve pouring efficiency and reduce construction costs, 
but also ensure construction quality and avoid structural 
durability problems. In recent years, it has been widely 
used in fields such as dam and tunnel engineering. Flow 
filling, anti-segregation and gap passing properties are 
the key performances of SCC, so they are used as 
performance evaluation indicators to control the quality 
of SCC. To ensure construction quality and structural 
safety, it is necessary to strictly control the working 
performance of SCC. Therefore, the corresponding index 
test is a very important link, which mainly includes 
expansion in slump flow test, H2/H1 in L-box test, 
V-shaped funnel flow time and other test contents, the 
measurement of temperature and gas content cannot be 
ignored either. Specifically, the slump expansion test 
evaluates the flow filling property of concrete by testing 
the T500 flow time and expansion in slump flow test; the 
L-box test evaluates the flow filling property and gap 
passability of the concrete by measuring the height ratio; 
the V-shaped funnel flow time is tested to evaluate the 
segregation resistance and flow filling properties of 
concrete. 

The high fluidity of SCC determines that pumping 
technology can be adopted in the transportation of the 
pouring process, but this also puts forward more stringent 
requirements on concrete pumping technology. If the 
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quality of the pumping process is not well controlled, it 
will directly affect the concrete construction performance 
and mechanical performance, such as shear thickening, 
early shrinkage and cracking, and degradation of 
physical and mechanical properties in the hardened state. 
The concrete pumping process involves many 
influencing factors, and it is difficult to avoid the 
degradation of its construction quality; in addition, the 
working performance of SCC is highly sensitive to the 
pumping process, so carrying out test to its pumping 
performance is required before and after pumping. The 
Shenzhen-Zhongshan Bridge uses pumped SCC. The 
amount of concrete is large, the pumping height is high, 
and the number of elbows is large. The pumping 
performance of laboratory batch testing will seriously 
affect the pouring efficiency and reduce the construction 
quality, so it is not realistic significance. If the SCC 
pumped on site can be used as the test object, its 
corresponding performance indicators can be obtained, 
the correlation between the influencing parameters 
before and after on-site pumping and the pumping 
performance can be established, the quality control of 
SCC can be improved and guide subsequent tube section 
or the construction process of similar projects, the quality 
of pumping can be in better control. 

Machine learning algorithms have been widely used 
to solve complex problems in civil engineering due to 
their excellent calculation accuracy, stability and 
efficiency. Different from traditional data fitting or 
regression methods, machine learning algorithms can 
implicitly simulate the mechanical behavior of materials 
or structures to find the optimal solution to the target 
problem. At the same time, the prediction accuracy and 
algorithm robustness can be guaranteed. Another type of 
data mining technology that is different from machine 
learning algorithms is Bayesian statistical inference, 
which is a type of analysis method developed based on 
Bayesian theory and has the ability to deal with the 
uncertainties involved in model parameter estimation, 
belongs to the posterior distribution. Compared with 

ordinary least squares regression model, Bayesian 
estimation usually has smaller variance in value. The 
proposed explicit probability prediction model can be 
updated in real time, which can ensure the stability and 
accuracy of the prediction results and is convenient for 
practical engineering application. 

The single steel shell tube section of the 
Shenzhen-Zhongshan Bridge has 2500 bins, with many 
anchor bars and ribs and complex structural forms, which 
require extremely high filling of SCC; in addition, 
because the SCC adopts a pumping process, there is a 
large difference of workability before and after pumping, 
and it is difficult to establish a reliable mathematical 
relationship between the changed parameters and the 
target performance by using conventional data regression 
and other analysis methods. In view of this, relying on 
the steel shell immersed tube tunnel project of the 
Shenzhen-Zhongshan Bridge, using the correlation 
analysis method of gray system theory, combining the 
scientific problems of pumping performance indicators 
with modern data mining technology, the implicit and 
explicit models between the key parameters and the 
target performance are established respectively in order 
to provide references for the prediction and quality 
control of the SCC pumping performance before and 
after pumping. 

2 Test overview at pumping field 

2.1 Concrete raw materials and mix ratio 

The steel shell immersed tube section in 
Shenzhen-Zhongshan Bridge adopted SCC of C50 
strength class. The raw materials include Conch brand’ 
PꞏII42.5R cement, Class I fly ash (F type), S95 mineral 
powder, river sand, and crushed stone coarse aggregate 
(two grades of 5-10 mm and 10-20 mm), city water, 
polycarboxylic acid high range water reducer. The mix 
ratio of SCC is shown in Table 1. 

Table 1 Mix proportion of SCC (kg/m3) 

Cement FA GGBS Sand 
10~20mm 

coarse aggregate 
5~10mm coarse 

aggregate 
water 

Water 
reducing agent 

1275 192 83 804 482 382 176 5.5 

 

2.2 Pumping workability test method 

The air content, slum flow test, T500 test, V-funnel test, 
and L-box instrument of SCC refer to "Standard for Test 
Methods of Performance on Ordinary Fresh Concrete " 
(GB/T 50080-2016) and " Technical Specification for 
Application of SCC" (JGJ/T 283-2012), " Technical 
Specification for Application of SCC" (CECS 203-2006), 
"Guide to Design and Construction of SCC " (CECS 
02-2004) for determination. The physical operation of 
each test index in the SCC field pumping process is 
shown in Figure 1. 
 

  
(a) Air content test    (b) Slump flow test and T500 test 
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(c) V-funnel test              (d) L-box test 
Fig.1 Working performance measurements for SCC 

2.3 Test database 

All data comes from the sampling test results of SCC 
pouring of E1-E4 tube sections in Shenzhen-Zhongshan 
Bridge, considering the influence of pumping distance, 
the number of elbows in the pumping pipe, the pumping 
time of the concrete in the pump pipe, and the 
environmental temperature on the pumping performance. 
To investigate the changes in the pumping performance 
of SCC during the pumping process, the temperature of 
the concrete mixture before and after pumping, T500 
flow time, slump expansion in slump flow test, V-funnel 
flow time, H2/H1of L-box test and air content were 
tested as evaluation indicators. Then establish the internal 
relationship between the change in pumping performance 
of the SCC mixture and the key influencing parameters 
(pumping distance, number of elbows, pumping time, 
ambient temperature), and construct the corresponding 
test database. The relevant statistical information is 
shown in the Table 2. 

It can be seen from Table 2 that the pumping 
performance of SCC changes significantly before and 
after pumping, which is manifested as loss of workability 
(reduction of T500 flow time, expansion degree in slump 
flow test in slump flow test, and V-funnel flow time) and 
increase of temperature and air content. This is mainly 
because the pumping process is often accompanied by 
the pumping out of free water or slurry water. At the 
same time, the hydration of cement will consume the free 
water in the cement slurry, which will lead to insufficient 
slurry water in the subsequent concrete mixture, and 
ultimately result in concrete workability loss overtime, 
concrete temperature and air content increase, and yield 
stress increase. If the pumping distance or the number of 
elbows is too large, the concrete mixture after the pump 
will basically lose its fluidity, and even block the pump; 
in addition, the concrete in the pump tube is often in a 
state of high shear stress, and the anti-dispersion ability 
of the cementitious material particles is greatly weakened, 
so that the plastic viscosity of the concrete mixture is 
reduced, which will also reduce its fluidity. 

It can be seen that the adoption of on-site quality 
control methods to detect the pumping process of SCC is 
indispensable, and it is of great engineering significance 
to predict the change in concrete pumping performance 
before and after pumping. By comparing the changes in 
the pumping performance of the concrete mixture before 
and after pumping, reasonable control of raw materials, 
mix ratios, transportation vehicles and construction 

techniques can be achieved, and the working 
performance of the SCC before entering the warehouse 
can be guaranteed to meet the actual construction needs. 

Table 2 Statistics of experimental database for pumping 
performance of SCC 

Pumping performance 
index increment 

(After the 
pump-before the 

pump) 

test 
numbers 

Average 
Standard 
deviation 

Coefficient 
of 

Variation 

temperature/℃ 199 1.6 0.2 0.2 
T500 flow time /s 144 -0.3 0.2 -0.5 
Expansion (slump 

flow test) /mm 
195 -41 9.0 -0.2 

V-funnel flow time/s 211 -2.2 0.3 -0.1 
L-box, H2/H1 125 -0.03 0.01 -0.21 
Air content/% 167 0.2 0.1 0.2 

3 Grey relational analysis 

The characteristic of the grey relational analysis method 
is to quantitatively evaluate a small group of statistical 
samples, and to quickly grasp the correlation between 
specific parameters and target performance by judging 
the degree of influence between the research objects. In 
this evaluation, the pumping distance, number of elbows, 
pumping time and ambient temperature are considered as 
the change parameters and selected as the sub-sequence 
{xi(j)} of the gray correlation system, which is defined as 
the comparison matrix accordingly, Xi (j); The change in 
the pumping performance of SCC (temperature, T500 
flow time, expansion degree in slump flow test in slump 
flow test, V-funnel flow time, H2/H1 in L-box test, air 
content) is used as the mother sequence of the gray 
correlation system {x0(j)}, correspondingly defined as the 
reference matrix, X0(j). The mathematical relationship 
between the reference matrix and the comparison matrix 
can be expressed as follows: 
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According to the grey system theory, the correlation 
coefficient calculation formula is: 
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In the formula: ρ is the resolution coefficient, and its 
function is to weaken the influence of the distortion of 
the large second-level maximum difference, so, as to 
increase the significance of the difference between the 
correlation coefficients. 

The correlation degree γi of each comparison 
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sequence and reference sequence can be calculated as 
follows:  

1

1 N

i i
k

k
N

 


   (6) 

Table 3 Calculation results of grey correlation 

Influencing factors temperature 
T500 

Flow time 
Expansion 

V-funnel 
flow time 

L type instrument 
H2/H1 

Air 
content 

Pumping distance 0.6 0.6 0.6 0.7 0.8 0.7 
Number of elbows 0.7 0.7 0.7 0.7 0.9 0.8 

Pumping time  0.9 0.5 0.5 0.8 0.6 0.7 
Ambient 

temperature 
0.9 0.6 0.6 0.8 0.9 0.8 

 
It is worth noting that the γ value is used as an 

evaluation index to evaluate the correlation between the 
sub-sequence and the parent sequence. Specifically, the 
closer the γ value is to 1.0, the stronger the sensitivity of 
the corresponding parameter, and the more significant the 
correlation between the variables; in addition, the γ value 
greater than 0.5 indicates that there is parameter 
correlation. Based on the test database established in 
Table 2, the correlation degree of each varying parameter 
to the change of the pumping performance of steel shell 
immersed tube SCC is shown in Table 3. It can be seen 
from Table 3 that the pumping distance, the number of 
elbows, the pumping time and the ambient temperature 
are all related to the change in the pumping performance 
of the steel shell immersed tube SCC (temperature, T500 
flow time, expansion degree in slump flow test, V-funnel 
flow time, L-shaped H2/H1, gas content) is related, and 
the influence of some parameters is very significant. 

4 Development of prediction model for 
pumping performance 

4.1 Support-vector machine (SVM) implicit 
model 

Support vector machine (SVM) can identify and 
represent nonlinear relationships in complex systems and 
has strong advantages in regression and classification 
problems. As shown in Figure 2, the SVM model 
includes an input layer, a support vector layer, a kernel 
function layer, and an output layer. 

 
Fig.2 Schematic diagram of SVM model 

 
The SVM model is based on the structural risk 

minimization theory, which minimizes the error of the 
training data set (empirical risk) and maximizes the 

generalization ability of the predictive model. Therefore, 
the method has strong predictive capabilities and can 
handle various data set well. In the nonlinear regression 
model of SVM, low-dimensional space is transformed 
into high-dimensional space through nonlinear mapping 
(ie, kernel function), and the linear method in 
high-dimensional space is finally used to solve the 
nonlinear regression problem. The SVM model is 
superior to most other machine learning algorithms in 
solving problems such as limited samples and nonlinear 
function fitting. 

For a given set of training data {(x1, y1), (x2, 
y2),… ,(xn, yn), x∈Rn, y∈Rn}, the SVM nonlinear 
regression prediction model can be expressed as: 

   
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n

i i
i

f x w x b


   (7) 

In the formula: τi(x) represents a set of nonlinear 
transformations; wi is the weight; b is the bias term. 
Introduce the insensitive loss function ε and define it as: 
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Introduce relaxation factors ξi，ξi
*(i=1,2,…,n)，Based 

on the structural risk minimization theory, the convex 
optimization problem can be constructed as follows: 
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In the formula: On the premise of improving the 

robustness of the model, the first term 
21

2
w  can 

greatly expand the scope of application of the model; 

second section  *

1

n

i i
i

C  


  represents the empirical 

risk to weaken the error in the training process or reduce 
the inconsistency between the predicted value and the 
experimental value. The constant C is the penalty 
parameter, and the larger the value of C is, ξi，ξi

* the 
greater the punishment for relaxation factor. 

Use Lagrangian multipliers to optimize the model to 
solve the optimal problem of nonlinear inequality 
constraints: 
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(10) 

Where L (w, b, ξ) is the Lagrangian function; χi, χi*, 
αi, and αi* are Lagrangian multipliers greater than 0. 

Based on Wolf's duality theory, by calculating the 
partial derivatives of w, b, and ξ in equation (10) and 
making their value equal to 0, the dual problem of 
equation (9) can be expressed as: 
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(11) 

Where K (xi, xj) is the kernel function used to adjust 
and perform SVM nonlinear regression analysis, mainly 
including linear, polynomial, radial basis, and perceptron 
type. 

Solve equation (11), get the optimal αi and αi*, then 
get the optimal SVM nonlinear fitting function: 

     *

1

,
n

i i i
i

f x K x x b 


    (12) 

The relationship between the pumping performance 
change of steel shell immersed tube SCC and its 
changing parameters is uncertain, and SVM has good 
nonlinear mapping ability and robustness, so consider 
using equation (12) in the prediction of pumping 
performance increment is appropriate.   

According to the evaluation result of the grey system 
theory, this paper adopts the four important parameters of 
pumping distance, number of elbows, pumping time and 
ambient temperature as the input variables of SVM. At 
the same time, the database in Table 2 is divided into a 
training set and a test set at a ratio of 3:1. The training set 
is used to train the SVM nonlinear regression model, and 
the test set is used to verify the accuracy of the machine 
learning prediction results. 

4.2 Bayesian Explicit Model 

Due to the characteristics of SCC materials, the 
sensitivity in the pumping process is more significant 
than that of ordinary concrete. The change of 
performance of steel shell immersed tube SCC 
(temperature, T500 flow time, expansion degree in slump 
flow test, V-funnel flow time, H2/H1 in L-box test, air 
content) has significant randomness on being affected by 
different factors. Therefore, the deterministic prediction 
model is difficult to fully consider the changes in factors 
such as raw material performance, environmental 
temperature, construction time, and pumping 
construction technology under uncertain conditions. 
Compared with the least squares regression model, the 
Bayesian probability prediction model can reasonably 
describe the probability distribution characteristics of 
each key parameter and the uncertainty caused by these 
parameters. Bayesian inference updates the prior 
information and provides the uncertainty information of 

the prediction by estimating the parameters. Using this 
method can provide a kind of accurate probabilistic 
prediction dynamic model for target performance 
evaluation. Based on the above discussion, a Bayesian 
probabilistic prediction model for the change in pumping 
performance of SCC is established that takes into 
account the influence of pumping distance, number of 
elbows, pumping time and environmental temperature: 

2   Y θX b  (13) 
In the formula: Y represents the probabilistic 

predicted value of the SCC pumping performance change; 
θ = [θ1, θ2, θ3, θ4]T represents the probability model 
parameter, which comprehensively reflects the objective 
uncertainty of influencing factors X = [x1, x2, x3, x4]T 
(pumping distance, number of elbows, pumping time and 
environmental temperature); b is a constant term, which 
comprehensively reflects the impact of objective 
uncertainty and subjective certainty; ε is a random 
variable; σ2 is the variance of the error produced by the 
posterior distribution. It should be noted that, in order to 
make the probability model suitable for the test results, 
the variance σ2 should be independent with the factor X 
and there is no linear relationship, and ε obeys the 
standard normal distribution. 

It can be obtained from Bayesian inference that the 
uninformed prior distribution f(θ, σ) of the parameters (θ, 
σ) should be uniformly distributed within the value range 
of (θ, σ). The mathematical expression is: 

  1f θ  (14) 

  1f     (15) 
The posterior distribution information of the 

parameter θ can be expressed as: 
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In the formula: f(y|θ) represents the likelihood 
function; f(θ) represents the prior distribution. 

According to the experimental database established in 
Table 2, Markov chain-Monte Carlo (MCMC) is used to 
simulate the sampling of equation (13), and finally the 
posterior probability distribution of the parameters (θ, σ2) 
is determined. Table 4 shows the operating results of the 
probabilistic model parameters (θ, σ2) of the change in 
pumping performance of SCC, and the probabilistic 
prediction model based on Bayesian-MCMC is obtained: 
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(17) 

Where y1, y2, y3, y4, y5 and y6 are temperature 
increment, T500 flow time increment, expansion degree 
in slump flow test increment, V-funnel flow time 
increment, L-box H2/H1 increment and gas content 
increment, respectively; x1, x2, x3 and x4 are pumping 
distance, number of elbows, pumping time and ambient 
temperature, respectively. 

Fig. 3 is a simulation trajectory diagram of the 
temperature increment model parameters that iteratively 
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forms the Markov chain, where the number of iterations 
n =10000 times. It can be seen from the figure that in the 
random simulation process, the samples used to obtain 
the posterior estimation of the Bayesian model 

parameters (θ, σ2) are all from the convergent Markov 
chain, thereby ensuring that the probabilistic prediction 
model has good accuracy and reliability Sexuality and 
robustness. 
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Fig.3 Simulated trajectory map of model parameters 

Table 4 Computational results of probabilistic model parameters 

Forecast target Statistical 
indicators 

b θ1 θ2 θ3 θ4 σ2 

Temperature  
increment 

Mean -0.2379 0.0013 0.0308 -0.0019 0.0555 0.0232 

Standard 
deviation 

0.1335 0.0004 0.0071 0.0013 0.0038 0.0023 

T500 flow time 
 increment 

Mean 1.3806 0.0003 -0.0077 0.0015 -0.0598 0.0188 

Standard 
deviation 

0.1597 0.0004 0.0083 0.0017 0.0044 0.0022 

Slump flow test 
expansion 
increment 

Mean -70.8954 -0.0425 -0.6746 0.1810 1.3077 52.7327 

Standard 
deviation 

4.5020 0.0200 0.3302 0.0580 0.1438 5.3296 

V-funnel flow 
time 

 increment 

Mean -0.6246 -0.0016 0.0134 -0.0125 -0.0440 0.0619 

Standard 
deviation 

0.1843 0.0006 0.0120 0.0025 0.0060 0.0060 

L-box test 
H2/H1 

increment 

Mean -0.0022 -0.0000 -0.0014 0.0002 -0.0010 0.0156 

Standard 
deviation 

0.0589 0.0004 0.0069 0.0013 0.0025 0.0020 

Air content 
 increment 

Mean 0.2617 -0.0005 0.0087 0.0002 -0.0023 0.0143 

Standard 
deviation 

0.1149 0.0003 0.0068 0.0014 0.0030 0.0016 

 

4.3 Model verification and discussion 

In order to test the accuracy of the developed implicit 
and display model in estimating the change in the 

pumping performance of steel-shell immersed tube SCC, 
the calculated value was compared with the measured 
value and a statistical analysis was performed. Figure 4 
shows the comparison of the SVM regression model 
prediction value, the Bayesian probability model 
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prediction value, and the measured value of the change in 
the pumping performance of steel shell immersed tube 
SCC. Taking temperature increment as an example, in the 
SVM regression model, the average value and the 
coefficient of variation of the predicted value/measured 
value are 1.001 and 0.067, respectively; in the Bayesian 
probability model, the average value and the coefficient 
of variation of the predicted value/measured value are 
1.007 and 0.088, respectively. Obviously, the calculated 
value of the developed model is very close to the 
measured value, and the deviation and randomness are 
small, which fully reflects the rationality and scientificity 
of machine learning and Bayesian statistical inference in 
the pumping performance modeling of steel shell 
immersed pipe SCC, ensures the accuracy and stability of 
the prediction results. 

It can be seen from Figure 4 that compared to the 
Bayesian linear probability model, the SVM nonlinear 
prediction model based on machine learning has global 
optimality and better generalization ability and has 
significant advantages for solving nonlinear computing 
problems and the prediction result is more accurate. But 
its limitation is that the mathematical relationship 
between variables is implicitly expressed, which is not 
convenient for the rapid design and calculation of the 
construction site; while the Bayesian linear probability 
model is an explicit dynamic model, Real-time data 
feedback can enrich the prior information, and the model 
can be updated and revised based on Bayesian theory, 
thereby obtaining a posterior model with higher 
prediction accuracy. Through the comparison and 
analysis with the test data, it can be seen that these two 
types of calculation methods can provide efficient and 
reliable pumping performance estimation for the quality 
control of the pumping SCC construction process of the 
Shenzhen-Zhongshan Bridge and achieve adjustment of 
construction technology base on key parameter of target 
pumping performance, provide effective reference for the 
concrete mixture pumping in subsequent tube section and 
similar project. 
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(a) Temperature increment 
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(b) T500 flow time increment 

1

2

3

4

0 50 100 150 200
0

1

2

3

4

 

Ave. = 1.009
SD = 0.092
COV = 0.091  SVM model

     

+ 50%

- 50%

+ 50%

- 50%

Bayesian model

Pumping distance (m)

M
od

el
 p

re
di

ct
ed

 / 
m

ea
su

re
d

Ave. = 1.046
SD = 0.252
COV = 0.241

(0)

 
(c) slump flow test expansion increment 
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(d) V-funnel flow time increment 
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(e) L-box H2/H1 increment 
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(f) Air content increment 

Fig.4 Comparisons between SVM regression model / Bayesian 
probability model predictions and measured values 

5 Conclusion 

The steel shell immersed tube tunnel of the 
Shenzhen-Zhongshan Bridge uses SCC to fill the 
immerse tube section. The amount of concrete is large, 
and the pouring is concentrated. The pumping method 
can effectively improve the efficiency of on-site pouring 
and ensure the construction progress. Because the 
concrete mixture is greatly interfered by external factors 
during the pumping process, its performance loss is more 
serious, which directly affects the quality of concrete 
construction. Therefore, the quality control of the SCC 
pumping process is an extremely important construction 
link. Based on the test results of the SCC pouring of the 
E1-E4 tube section of the Shenzhen-Zhongshan Bridge, 
and considering the influence of pumping distance, 
number of elbows, pumping time and ambient 
temperature on the pumping performance of concrete 
mixture, two types of high precision evaluation method 
for predicting the change of the pumping performance of 
SCC before and after pumping, and the following main 
conclusions are obtained: 

(1) Based on the integration of field measured data 
information, grey correlation analysis is used to evaluate 
the sensitivity of various changing parameters. The 
results show that the pumping distance, the number of 
elbows, the pumping time and the ambient temperature 
are all related to the changes in the pumping performance 
of steel shell immersed tube SCC (temperature, T500 
flow time, expansion degree in slump flow test, V-funnel 
flow time, L-box H2/H1, air content), and the influence 
of some parameters is very significant. 

(2) Using the powerful data mining capabilities of 
SVM machine learning and Bayesian statistical inference, 
and under the premise of uncertain mathematical 
relationship between independent variables and 
dependent variables, the implicit and explicit prediction 
models of change of pumping performance of steel shell 
immersed tube SCC was established respectively, both 
the model have received good results in terms of 
prediction accuracy and prediction stability. 

(3) In terms of practicality, the Bayesian explicit 
probability model is more convenient for on-site 

calculations than the SVM implicit model, and its model 
comprehensively considers the impact of SCC materials 
and the subjective and objective uncertainties in the 
construction process, as a result, the application of this 
method is flexibility and operability. 
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