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Abstract. Practical and efficient state estimation is essential for the safe and stable operation of future smart 
grid. In rectangular coordinates, distribution system state estimation (DSSE) problem can be described as a 
sparse quadratic constraint quadratic estimation (QCQE) model, which enhances efficiency of the program 
implementation for DSSE. However, the scarcity of measurements in distribution network brings a formidable 
challenge to provide reasonably meaningful estimation of the distribution system state. This paper is 
concerned about application of QCQE in under-determined distribution network. Observability analysis 
technique is proposed by considering the characteristics of actual distribution network. The observable islands 
are recognized accordingly, and then unobservable areas can be accurately defined. Pseudo-measurements are 
adopted to meet the observability requirement. Simulation on IEEE 33-bus shows effectiveness of the 
proposed method. 

1 Introduction 

By utilizing the redundant real-time measurements 
provided by supervisory control and data acquisition 
(SCADA), state estimator provides good estimation of bus 
voltage phasors. With the development of active 
distribution network, the integration of distributed 
generators, electric vehicles and controllable loads brings 
new opportunities and challenges to the distribution 
network [1-3]. Therefore, sufficiently accurate and instant 
state estimation is needed to provide real-time information 
of distribution network to help operators make correct 
decisions. 

Unlike transmission systems that enjoy a high level of 
measurement data redundancy, distribution systems have 
limited measurements that large-scale distribution 
systems are mostly with poor observability. Researches on 
DSSE appeared in the 1990s. Much work so far has 
concentrated on dealing with the unobservable problem 
that caused by scarcity of real-time measurements. By 
studying the probability distribution density function of 
loads and the spatial/temporal correlation between 
adjacent buses, pseudo-measurements can be generated 
precisely [4-6]. The non-linear auto-regressive exogenous 
model is used to describe the load change and to obtain the 
pseudo-measurement values [7]. Machine learning 
algorithms forecast the loads which are used as pseudo-
measurements in [8, 9].  

In rectangular coordinates, by introducing 
intermediate variables and equality constraints, the DSSE 
problem is modelled as a sparse quadratic constrained 
quadratic estimation (QCQE) model [10]. This paper 

adopts the QCQE model, which is convenient for 
programming implementation, to solve the DSSE problem. 

In this paper, the observability analysis method is 
taken into consideration and a further discussion on 
application of QCQE model in distribution network is 
made. Rest of the paper is structured as follows: The 
second section puts forward a novel observability analysis 
method which is suitable for distribution networks. 
Unobservable areas are accurately defined on the basis of 
the proposed criteria. Then a pseudo-measurement 
generating model is presented. The third section shows the 
simulation results on the IEEE 33-bus test system. The 
forth section summarizes the proposed method. 

2 Distribution network observability and 
pseudo measurement modelling 

Observability analysis identifies whether a set of available 
measurements is sufficient to estimate the system state. 
Network observability analysis is mainly accomplished by 
numerical [11] and topological [12] approaches. 
Mathematically network observability is related to the 
rank of the Jacobian matrix of estimation equations, which 
is very sensitive to the numerical values of its elements 
[13]. Topological approaches are widely used because 
they can make judgment on the type and location of real 
time measurements without any numerical calculations. 

2.1Distribution network observability analysis 

The observability analysis method proposed in this paper 
is based on topological analysis. It seeks to find a maximal 
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forest of network full rank. When the maximal forest 
found in the network is a spanning tree, the network is 
observable. For a distribution network, the feature of 
radial structure determines that the spanning tree can only 
be the network itself, which can greatly simplify the 
existing topological observable methods. Besides, the 
extensive use of pseudo-measurements is another 
significant feature of unobservable distribution network. 
It is important to find the minimal set of pseudo-
measurements because excess pseudo-measurements with 
low precision will degrade the estimation accuracy. Hence, 
observability analysis needs to accurately detect the 
unobservable area and efficiently generate pseudo-
measurements. 

Distribution network is generally running in radial 
structure. By removing all the branches equipped with 
branch power flow measurements, the distribution 
network is divided into several observation areas. The 
buses connected by remaining branches are naturally 
assigned into the same observation area. A typical 
observation area is shown in figure 1. 

 

 

Figure 1. Typical observation area. 

Since the power flow of all the branches incident to the 
observation area are measured, the sum of the total bus 
injections and loss can be determined:  
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where inS  represents the inflow of upstream branch. 

.out iS  represents the outflow of downstream branch i. n  

is the count of the downstream branches. kS  and lS  

denote the injection value of measured bus k and 
unmeasured bus l respectively. mN  and umN  are the 

number of measured and unmeasured bus injections 
respectively. e and f  represent the real and imaginary 

part of the vector of bus voltages respectively. 

 lossS e, f  represents the total power loss of the 

observation area. 
Based on the bus injection measurements, we can take 

the following criteria for observability analysis: 
 If 1umN  , namely there is at most one 

unmeasured bus injection, then the area satisfies the 
observability requirement. In particular, when all the 
buses’ power injections are measured, the observation 
area has redundant measurements.  

 If 2umN  , there are two or more unmeasured 

bus injections in the observation area which means that the 
related states are under-determined. Though the total 
power flow is available, increasing the injection values of 
some buses can be balanced by reducing that of the others. 
Therefore, we need to generate pseudo-measurements to 
avoid multiple solutions. 

According to the discussion above, unobservable areas 
can be detected and then the set of pseudo-measurements 
are used to recover network’s observability. 

2.2Pseudo measurements modelling 

As a compromise between efficiency and accuracy when 
augmenting the real-time data with pseudo-measurements: 

 By dealing with existing information effectively, 
pseudo-measurements generated preferably have a good 
approximate linear relationship. The minimal number of 
pseudo-measurements can reduce the calculation scale of 
DSSE, improve the convergence of the algorithm and 
maintain the QCQE model’s computational efficiency.  

 The estimated bus injections should be as close 
as possible to the actual situation, so as to ensure that the 
accuracy of the state estimation meets the application 
requirements.  

Based on the above discussion, for any unobservable 

subarea k, the total active power, kP , and reactive power, 
kQ , are introduced as new state variables. The pseudo-

measurements are calculated as follows: 
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where i denotes the number of bus. i
injP  and i

injQ  are the 

pseudo active and reactive injection measurements of bus 

i. k
LS  is the collection of all unmeasured bus injections in 

subarea k. i  and i  represent the proportion of the 

active and reactive power injection of bus i to the total 
power injection of the observation area.  

The proportions are unknown to DSSE, but can 
generally be approximated by the ratio of injection 
capacity, and then used in DSSE. In case that energy 
measurements of a certain duration is known, the 
proportions approximated by the ratio of active and 
reactive energy can give better DSSE result. 

By identifying the unobservable areas and adding 
reasonable pseudo-measurements, this section enables 
distribution networks to meet the observability 
requirement of DSSE. 

3 Simulation results 

The proposed QCQE model is tested on the IEEE 33-bus 
test system, shown in figure 2. The base voltage is 12.66 
KV and the total load is 3715 2300KW j KVAR . The 
specific load and parameter information can be obtained 
from [14]. The load flow results are used to simulate the 
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measurement values. No measurement error is introduced 
in the simulation.  
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Figure 2. The IEEE 33-bus test system.  

In actual distribution network, only the substation and 
part of the distribution network are equipped with SCADA 
measurements. Thus, pseudo measurements are provided 
for state estimation with the proposed pseudo 
measurement model. The proportions of active and 
reactive injection powers to related observation area are 
approximated by the ratio of injection capacity. 

The measurement system is configured according to 
table 1. 

 
Table 1. The configuration of SCADA measurements. 

Type of measurements Branch / Bus 

Bus voltage magnitude( mU ) 1,2,3,6,12 

Bus power 

injection( ,i iP Q ) 

23,24,30 

Branch power 

flow( ,ij ijP Q ) 

1-2, 2-19,3-23,6-26,11-
12 

 
According to the rules described in section 2, by 

removing the branches equipped with power flow 
measurements, the distribution system is then divided into 
6 observation areas as shown in Figure 3. Area A1 
contains only one bus, named as bus 1, whose power 
injection are not measured but can be determined by the 
measured branch power flows on branch 1-2. Then area 
A1 is observable. Area A2 contains 3 nodes, but only the 
power injection of node 25 are not measured, and is also 
observable. Each of area A3~A6 has more than one bus 
without injection measurements, and is unobservable. The 
area power injection states and pseudo-measurements as 
(2) need be added for DSSE. 
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Figure 3. The observation areas of IEEE 33-bus test 
system.  

Figure 4 and figure 5 show the simulated estimation 
results for the active and reactive power injections on load 

buses. As to the power injections in observable areas, such 
as bus 23, 24 and 25 in observation area A2, the estimated 
values are all quite close to the corresponding true values. 
As to the bus injections in unobservable areas, the 
estimated error may much bigger than that of injections in 
observable areas because of the lower precision of pseudo 
measurements. As you can see from figure 4 and figure 5, 
the estimated values for power injections in unobservable 
areas are also close enough to the corresponding true 
values, which are generally precise enough for DSSE. 

 

 

Figure 4. The active power injections on load buses. 

 

Figure 5. The reactive power injections on load buses. 

4 Conclusions 

This paper proposes an observability analysis method and 
a related pseudo measurement modelling method for 
DSSE with limit measurements. The distribution network 
is divided into observation areas with the branches, which 
are equipped with power flow measurements, as the 
boundary. Rules are then proposed to identify the 
observability of observation areas. Pseudo measurements 
are introduced for each unobservable area. The QCQE 
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model is adopted to solve DSSE problems. Simulation on 
the IEEE 33-bus test system shows that the proposed 
observability analysis method is convenient, and the 
precision of pseudo measurement model is generally 
acceptable for DSSE.  
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