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Abstract. A novel method to predict transformer fault by forecasting the variation trend of the dissolved 
gases content is proposed. After the content of each feature gas, such as hydrogen and methane, is obtained 
by the proposed forecasting model, the fault type can be diagnosed by the dissolved gas analysis (DGA) 
technologies. Firstly, the GM (1,1) grey model with unequal time interval is introduced to generate a general 
forecasting model for each feature gas. The introduced grey model with unequal time interval will enforce 
no constrain on the historical measurement data. Consequently, the time intervals of the two adjacent 
measuring points can be either constant or variant. To address the deficiency that the existing grey model is 
unable to describe the fluctuation of the predicted object in time domain, the Markov chain is introduced to 
improve the accuracy of the grey forecasting model. An adaptive method to automatically divide the state 
space based on the number of states and the relative error of the grey model is presented by using Fibonacci 
sequences. Practical measurements are used to verify the accuracy of the proposed forecasting model. The 
numerical results show that there is high probability (86%) that the proposed grey-Markov model acquires a 
smaller prediction residual as compared to the original GM(1,1) grey model.  

1Introduction 

Power transformers play an important role in a power 
system to transform the voltage from one level to another. 
Consequently, it is essential to ensure a safe operation of 
the power transformer since a transformer fault may 
result in an interruption of the power supply. The 
conventional approaches to detect the incipient faults of a 
transformer include the state assessment and fault 
diagnosis. However, both approaches are based on a real-
time measured or recent tested data. Once a fault has 
been identified, the transformer will be out of service as 
soon as possible to avoid an incipient fault deteriorating 
into a catastrophic one. As a result, an operator will 
suffer a heavy stress to maintain the continuity of the 
power supply when this situation appears. In this point of 
view, the prediction of transformer faults is indispensable 
to conduct a reasonable maintenance to ensure the safe 
operation of a transformer.  

So far, some efforts have been devoted to solve the 
issues related to transformer fault predictions [1]-[13]. 
All existing approaches for predicting transformer fault 
are along the lines of forecasting the concentration of 
feature gases. Grey model is used to construct the 
forecasting model of the dissolved gases contents [1]-[3]. 
The cloud-based reasoning and semi-Markov model are 
used to predict and diagnose transformer faults [4]. 
Hidden Markov model together with Gaussian mixture 
model is applied to the dynamic fault prediction of power 

transformers [5]. The prediction problem of transformer 
faults is converted into a multi-dimensional regression 
one and then solved by robust optimizations [6]. 
Recently, more and more machine learning methods, 
especially support vector machine (SVM) [7]-[12] and 
artificial neural network (ANN) [13], have been utilized 
in transformer fault predictions. 

Grey model is developed from the grey theory [14]. 
More specifically, the GM(1,1) grey model is one of the 
most commonly used forecasting models. In a GM(1,1) 
grey model, it is assumed that the accumulated 
generating operation (AGO) sequences satisfy a first-
order differential equation. The forecasting model of the 
predicted object can be obtained by solving this 
differential equation. Actually, GM(1,1) grey model has 
already been used to predict transformer faults, and it 
seems that a good performance has been obtained [1]-[3]. 
For example, A grey model with unequal time intervals 
is proposed, and an interpolation method is introduced to 
reconstruct the measuring points in [1]. A grey model for 
feature ratio is introduced, and then the future fault can 
be diagnosed with the base of the predicted feature ratio 
by using DGA technologies [2]. A modified grey model 
by replacing 1-AGO with 2-AGO is proposed in [3]. 

In this paper, a novel method to predict transformer 
faults is developed. More specially, a general forecasting 
model for dissolved gases is developed. The time interval 
of each two adjacent measuring points can be either 
constant or variant, and the trend of the original data can 
be either monotone or fluctuant in time domain. The 
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Grey-Markov model is obtained by combining the grey 
model and Markov chain to reduce the modelling error 
and to improve the accuracy of the forecasted results. A 
method to divide the state space automatically with the 
aid of Fibonacci sequences is proposed. The comparison 
results show that the proposed grey-Markov model can 
improve the forecasting accuracy effectively. 

2Forecasting model for dissolved gases 
of transformers 

2.1Grey forecasting model 

GM(1,1) grey forecasting model has its inherent 
advantage of using only a few measuring points in time 
domain to generate the GM(1,1) grey model. However, 
the traditional GM(1,1) grey model requires some evenly 
distributed measuring points in the time interval. When 
the measuring points with an equal time interval are 
unavailable, the unevenly distributed measuring points 
are generally converted into evenly distributed measuring 
points by interpolations. However, this procedure will 
incur additional errors to the measurement data, thereby 
reducing the reliability of the grey model. The GM(1,1) 
grey model with unequal time interval is built by 
redefining AGO in this paper. The procedure of 
constructing a GM(1,1) grey model is shown in figure 1. 

The details of each step to generate a GM(1,1) grey 
model are explained in the following paragraphs. 

 Accumulated generating operation 

The redefined AGO is given as follows: 
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where ( )t k  is the time interval between the kth 

measuring point and the (k-1)th measuring point, (0)( )x i  

is the measurement value of the ith measuring point, 
(1)( )x k  is the kth point of the AGO sequences, n is the 

number of the total measuring points. It should be noted 
that the time interval shown in equation (1) is normalized 
before making the AGO. The original data sequences 

(0)x  and AGO sequences (1)x  are as follows: 
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Input raw data, including the content of 
dissolved gases and time interval.

Make accumulated generating operation 
according to redefined AGO.

Construct a first-order differential equation 
for x(1).

Discretize the differential equation, and determine the parameter a and 
u in the differential equation based on AGO sequences.

Solve the differential equation, and obtain the forecasting model of 
dissolved gases by inverse AGO.

Calculate relative error between the output of GM(1,1) 
grey model and measurement.

Divide state space based on relative error.

Correct the forecasting model based on the distribution of 
measuring points in state space, and calculate one-step 

transition probability matrix.

Correct the forecasting results based on one-step transition 
probability matrix. 

GM(1,1) 
grey 

model

Grey-
Markov 
model

 

Figure 1 The flow chart in constructing the proposed forecasting model 

 A first-order differential equation for AGO 
sequences 

In GM(1,1) grey model, it is assumed that the trend 
of AGO sequences in time domain can be described by 
the following differential equation: 

(1)
(1)dx

ax u
dt

                         (3) 

where a and u are parameters to be determined later. 

 Discretization of the differential equation 
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The purpose of discretizing the differential equation 
is to determine the value of parameters a and u in the 
equation. Replacing a differential by a difference, one 
obtains 
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When discretizing the differential equation (3), (1)x  
is substituted by an equal-weighted background value, 
and its expression is as follows: 
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 Determination of parameters a and u 

According to equation (4) and equation (5), when the 
value of k goes from 2 to n, following equation sets can 
be obtained: 
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Rewrite these equations in a form of matrixes: 
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The parameters a and u can be obtained by solving 
1( )T TB B B Y  . 

 Solution of the differential equation 

Substituting the value of parameters a and u into 
equation (3), the solution of the differential equation (3) 
can be obtained by solving an ordinary first-order 
differential equation, and its solution is: 

(1) (0) ( ( ) (1))ˆ ( ) [ (1) ]  ( 1,2, , )a t k tu u
x k x e k n

a a
      (9) 

The forecasting model of the predicted object (the 
content of dissolved gases) can then be obtained by the 
inverse AGO: 
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Apparently, when k=1, according to the definition of 
the AGO and equation (9), there exists 

(0) (1) (0)ˆ ˆ(1) (1) (1)x x x  , which means that there is no 

modelling error in the first point in GM(1,1) grey model. 

2.2Grey-Markov forecasting model  

Usually, the GM(1,1) grey model can not completely 
describe the trend of the predicted object. In other words, 
there are modelling errors between the outputs of the 
grey model and measurement results. The modelling 
errors would become more obvious when the original 
data fluctuates in time domain, since the essence of the 
output of GM(1,1) grey model is an exponential function. 
However, the content of dissolved gases is not always 
maintaining the trend of growth [15]. For this reason, it is 
necessary to modify the GM(1,1) grey model so that it 
can be applied to the case where the predicted object 
does not vary monotonously in time domain. 

For the purpose of reducing modelling errors, the 
GM(1,1) grey model is combined with the Markov chain 
to generate a grey-Markov model. Grey-Markov model is 
firstly proposed in [16] and shows good performances in 
forecasts [17]. After grey model is built, the grey-
Markov model can be generated following the 
procedures shown in figure 1. The detail of each step is 
described as: 

 Calculation of modelling errors 

The modelling errors between the outputs of GM(1,1) 
grey model and the measurement results are given by: 

(0) (0)ˆ( ) ( ) ( ) ( 1,2, , )k x k x k k n     (11) 

where (0)( )x k  and (0)ˆ ( )x k  are the measurement value 

and the output value of the grey model at the kth point, 
respectively. 

 State space division 

If the number of states in the state space is recorded 
as m, the range of each state can be expressed as: 
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where (0)x  is the average of the measurement values and 
is calculated ones from the following equation: 

(0) (0)

1

( ) /
n

i

x x i n


                        (13) 

Parameter  ( 1,2, , 1)j j m    satisfies following 

condition: 

1 2 1m                           (14) 

It should be stressed that the value of j  should be 

determined according to the modelling errors. In this 
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paper, a new method to determine the value of j  is 

developed. 
Firstly, the value of 1m   is determined from the 

following equations: 
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The principle of the state space division is that the 
width of each state subspace is proportional to its 
distance between the subspace and centerline (the line 

corresponding to (0)( )x i ). Besides, the state subspaces 

are symmetric based on the centerline. So, m is an even 
number. 

In the case of m=2, there is no state space division 
problem. Therefore, one will discuss the division only 
when 4m  . In this study, the division of the state space 
is realized with the aid of Fibonacci sequences. Here, the 
recurrence formula of Fibonacci sequences is simply 
reviewed, and its recurrence formula is as follows: 

F(0)=0

F(1)=1

F(k)=F(k-1)+F(k-2)

                        (16) 

The procedure for dividing the state space is as 
follows: starting with the fourth number (F(3)) of the 
Fibonacci sequences, then taking m/2 numbers from F(3), 
and using these m/2 numbers for state space bandwidth 
allocation. Firstly, the half-space ( 0  ) is divided as 
follows: 
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Then, another half-space can be determined 
according to the symmetry of the state space. In order to 
make this process visible, an example of the state space 
division is shown in figure 2. In this example, there are 
four state subspaces, and each one is a banding zone. 

 
Figure 2 An example of state space division 

 Calculation of the transition probability matrix 

The procedure of calculating the transition matrix is 
detailed as: firstly, evaluate the number of the original 

data sequences (0)( ) ( 1,2, , 1)x i i n   contained in 

each state subspace, and record as ( 1,2, , ) kn k m  ; 

Symbol ksn  represents the number of the original data 

sequences transiting from the kth state into the sth state 
within one step; then the one-step transition probability 
matrix can be calculated as follows: 
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 Correction of the outputs of the grey model 
and forecasting results 

Supposing that (0)( )x i  falls into the jth state, the 

output of the forecasting model is corrected as: 

(0) (0) (0) (0)
1

1
ˆ( ) ( ) ( )

2 j jx i x i x x            (19) 

The state of the forecasting results can be determined 
based on the state of the last data point and the one-step 
transition probability matrix. 

3Application 

In order to verify the accuracy of the proposed method, 
some practical measurements are used to test the 
proposed forecasting model. The data shown in table 1 is 
extracted from [15]. The time interval of these 
measurements is variant. The seven feature gases result 
in seven forecasting models. A distinguishing feature of 
these original data is that the original data sequences 
fluctuate in time domain, resulting a big challenge in 
accurately forecasting the results from existing models 
and methods. 

There are six measuring points for each feature gas. 
The first five measuring points are used to construct the 
forecasting model, and the last measuring point is used as 
the testing point. Table 1 shows the results obtained from 
the GM(1,1) grey model and the grey-Markov model. By 
comparing the modelling errors of the GM(1,1) grey 
model and the grey-Markov model, it is found that the 
proposed grey-Markov model has smaller modelling 
errors than the original GM(1,1) grey model in all of 
these seven cases. In view of the forecasted performance, 
apparently, the grey-Markov model shows a better 
forecast accuracy, since the grey-Markov model achieves 
a smaller prediction residual for tall six cases. 

Moreover, if one observes the results shown in table 
1 carefully, it is not hard to find that the outputs of the 
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GM(1,1) grey model change monotonously after the 
second point. This phenomenon can be easily understood 
since the essence of the outputs of the GM(1,1) grey 
model is an exponential function. However, the outputs 
of the proposed grey-Markov model fluctuate in time 
domain, which is similar to the original data sequences. 
Consequently, it can be concluded that the proposed 
grey-Markov model can trace the fluctuation of the 
predicted object. 

 
 
 
 
 

4Conclusion 

A novel forecasting model to predict the variation trend 
of the dissolved gases content in transformers is 
proposed. A general forecasting model for feature gases 
is developed based on the GM(1,1) grey model with 
unequal time interval to facilitate its application in  
uneven time interval measurements. In order to avoid the 
deficiency of being unable to describe the fluctuation of 
the predicted object in time domain of a GM(1,1) grey 
model, the GM(1,1) grey model is combined with a 
Markov chain to generate a grey-Markov model. The 
numerical results as reported show that the proposed 
grey-Markov model can achieve not only smaller 
modelling error but also better forecast performances. 

Table 1 The comparison of the results obtained from GM(1,1) grey model and grey-Markov model 

Date 1994-6-1 1994-6-3 1994-6-7 1994-6-9 1994-6-13 1994-6-17 Modeling 
error 

Prediction 
residual  1 2 3 4 5 6（Forecasted） 

𝐻  120 110 135 115 140 125 \ \ 
(0)x̂  120.00 114.62 121.05 127.80 134.97 145.12 5.85% 16.10% 
(0)x  120.00 111.31 132.64 116.21 138.29 141.81 1.04% 13.45% 

𝐶𝑂 360 370 380 380 450 420 \ \ 
(0)x̂  360.00 358.69 381.79 406.21 432.37 469.76 2.87% 11.85% 
(0)x  360.00 365.11 375.37 383.73 454.85 447.28 0.92% 6.50% 

𝐶𝑂  1500 1450 1500 1500 1700 1600 \ \ 
(0)x̂  1500.00 1424.70 1497.10 1572.75 1652.68 1765.29 1.91% 10.33% 
(0)x  1500.00 1442.51 1514.91 1510.42 1715.01 1702.95 0.62% 6.43% 

𝐶𝐻  160 170 185 185 220 200 \ \ 
(0)x̂  160.00 167.62 181.59 196.58 212.96 236.83 2.54% 18.42% 
(0)x  160.00 170.38 184.35 186.91 222.63 227.15 0.56% 13.58% 

𝐶 𝐻  55 58 61 61 77 74 \ \ 
(0)x̂  55.00 55.63 60.98 66.78 73.20 82.68 3.71% 11.73% 
(0)x  55.00 57.05 62.40 61.81 78.16 77.71 1.36% 5.01% 

𝐶 𝐻  300 315 350 345 400 375 \ \ 
(0)x̂  300.00 315.38 338.63 363.38 390.16 428.80 2.23% 14.35% 
(0)x  300.00 311.01 353.93 348.07 405.46 413.50 0.93% 10.27% 

𝐶 𝐻  1.4 1.4 2.1 1.7 1.6 1.5 \ \ 
(0)x̂  1.40 1.63 1.63 1.62 1.61 1.60 8.83% 6.67% 
(0)x  1.40 1.34 1.93 1.32 1.53 1.30 7.82% 13.33% 

 
(0)x̂ : The result from GM(1,1) grey model, (0)x : The 

result from grey-Markov model. 
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