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Abstract. The uncertainty of distribution network operation is increasing with the integration of large-scale 
renewable distributed generation (DG) units. To reduce the conservativeness of traditional robust 
optimization (RO) solutions, a data-driven robust optimal approach, which incorporates the superiority of 
both stochastic and robust approaches, is employed to solve the dispatch model in this paper. Firstly, a 
deterministic optimal dispatching model is established with the minimum total operation cost of distribution 
network; secondly, a two-stage distributed robust dispatching model is constructed based on the historical 
data of renewable-generators output available. The first stage of the model aims at finding optimal values 
under the basic prediction scenario. In the second stage, the uncertain probability distribution confidence 
sets with norm-1 and norm-∞ constraints are integrated to find the optimal solution under the worst 
probability distribution. The model is solved by column-and-constraint generation (CCG) algorithm. 
Numerical simulation on the IEEE 33-bus system has been performed. Comparisons with the traditional 
stochastic and robust approaches demonstrate the effectiveness of the proposal. 

1 Introduction 

With the increasing number of the DGs, the traditional 
distribution network is going to be gradually transformed 
into the active distribution network (ADN), which is 
capable of coordinating DGs, energy storage systems 
(ESS), demand-side response to keep the distribution 
network operate in security and economy [1]. 

However, the active power output of distributed 
renewable generators (DRGs), such as photovoltaic (PV) 
and wind power generation (WT) units, may fluctuate 
with the changing weather conditions and is hard to 
predict accurately. To cope with the uncertainties 
brought by DRGs in power dispatch, a variety of 
approaches with different stochastic variables and 
constraints embedded have been employed extensively, 
such as stochastic optimization (SO) [2-3] and robust 
optimization (RO) [4-5]. In SO, random variables with a 
known probability distribution are generally used to 
account for the output of DRGs. Compared with SO, RO 
has the following upsides: more computationally 
tractable and easier to obtain empirical or predictive 
knowledge required by the uncertainty set of DRG 
output. However, RO tends to make more conservative 
dispatch decisions, and being robust to unnecessary 
situations could even lead to infeasibilities on some 
occasion.  

Distributed Robust Optimization (DRO) incorporates 
the superiority of SO and RO to find the worst 
probability distribution in a range of known confidence 

sets. Traditional distributed robust optimization (TDRO) 
mainly applies Wasserstein scalar [6] or deterministic or 
uncertain first-order and second-order moments to 
construct probability distribution sets, so as to form 
complex NP problems for optimization solution [7]. But 
its solving process is very complex. In practice, a large 
number of DG historical data can be used to construct a 
series of possible probability distribution, which can be 
constrained by the sets of norm-1 and norm-∞. This 
method is known as data-driven optimization [8-9], 
which neither require probabilistic distribution 
assumption nor need dualization, and thus it is less 
computational burden. Recently, this approach is 
adopted to solve the unit commitment problem [10-11], 
but has not been employed for power dispatch of 
distribution network to our best knowledge. 

This paper proposes a two-stage robust optimization 
model for the economic dispatch of ADNs based on 
data-driven. The main contributions of this work include:  

 (1) The first stage optimization aims at minimizing 
comprehensive operation cost of ADN based on the 
forecasted output of DRGs, where the charging & 
discharging state of energy storage devices (ESD) and 
power of demand response (DR) are selected as control 
variables.  

 (2) In the second stage optimal model, norm-1 and 
norm-∞are integrated together to construct the 
confidence set of uncertain probability distribution.  

 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

E3S Web of Conferences 257, 01050 (2021) https://doi.org/10.1051/e3sconf/202125701050
AESEE 2021



 

2 Deterministic mathematical model 

2.1. Objective function 

This optimization aims at the minimum total cost of 
ADN as follows: 
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Where C11 represents the cost of purchasing 
electricity from the main network, C12 is the total power-
loss cost of the distribution network, C2 denotes the 
generation cost of the dispatchable distributed energy 
resources, including gas turbines and ESDs, C3 is the 
cost for scheduling DRs. T, △t are respectively the 
number of scheduling time intervals and the time interval; 
ct

0, Pt
0 are respectively the electric price and the active 

power injected into the ADN from the main network at 
the period t; n is the number of nodes in ADN, bΩ is the 

set of buanches, rij is the resistance of branch ij, Iij,t is the 
current flowing through branch ij at the period t;  Pi,t

G is 
the output of the gas turbine located the node i and ai,bi 
are its coefficients of generation cost; Pi,t

c and  Pi,t
d are 

respectively the charging power and discharging power 
of the ESD located the node i at t, and ki

c and ki
d are 

respectively its charging cost coefficient and discharging 
one; Pi,t

dr and Pi,t
dr* are respectively scheduled active 

power and original one of the DR located the node i at 
the period t, and ki

dr is its unit scheduling cost.                                  

2.2 System Constraints  

1)  Power flow constraints 
The equations representing the steady-state operation 

of a radial DN are shown in (2)[12]: 
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Where 2
, ,ij t ij tI I , 2

, ,i t i tV V . Ωn is the set of nodes, Pij,t, 

Qij,t are respectively active power flow and reactive 
power flow of branch ij at the period t, δ(j) is the set of 
branch terminal nodes with j as the head node, π(j) is the 
set of branch head nodes with j as the terminal node, xij 
is the reactance of branch ij, Vi,t,Vj,t are respectively the 
voltage amplitude of the node i and j at t, Pj,t and Qj,t are 
respectively active power and reactive power injected 
into the node j at the period t, which are expressed as (4): 
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Where Pj,t
W , Pj,t

L are respectively the output of WT 
and the active power of load located at the node j at the 
period t, Qj,t

cp  is the reactive power injected by the 
reactive power compensator located at the node j at the 
period t, λj

G and λj
L are respectively the tangent of 

power-factor angel of gas turbine and load located at the 
node j, WT operates in unit power factor in the 
paper. c

,i ts , d
,i ts are bool variables, if c

,i ts =1, the ESD is 

extracting power from the ADN and if d
,i ts =1, the ESD is 

injecting power into the ADN.  
The equation (3) is hard to be solved effectively due 

to its nonlinearity. By using the second-order cone 
relaxation technique[13], this equation is transformed 
into inequality constraint (5) which is of convexity. 
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2) Operational constrains of the network 
In order to ensure the safe operation of distribution 

network, the voltage of each node and the current of 
each branch should not exceed their limits as follows:  

2 2 2
min , max , ,maxi t ij t ijV V V I I   ，                    (6) 

Where Vmax、Vmin are respectively the upper and lower 
limits of voltage, Iij,max is the maximum current in the 
branch ij. 

   3) Operational constrains of gas turbines 
The generation and ramping limitations are included: 
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Where G
,maxiP , G

,miniP , u
ir , d

ir  are respectively maximum 

and minimum active output and ramp-up rate and ramp-
down rate of the gas turbine located at the node i. 

4) Operational constraints of ESD 
For the ESD at node i, the operating constraints are 

as follows during the period t: 
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Where Ei,t denotes state of charge, ηc and ηd  are 
respectively power extraction and injection efficiency, 
Pi,max

c, Pi,max
d, Ei,max 、 Ei,min are respectively maximum 

power extraction capacity, maximum power injection 
capacity, upper and lower limits of energy storage.  

5) DR constraints 
Here, assuming DRs are the shifting loads which 

satisfy the constraints: 
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Where Di, Di,max, Di,min are respectively the total 
electricity of DR during the dispatching cycle and its 
maximum and minimum values . 

3 Data-driven two-stage robust optimal 
model 

In the last section, the optimization model is only 
conducted under a predicted DRG-output curve over 
multiple time periods. To address the uncertain 
generation output of RES, a two-stage robust optimal 
dispatch model is established to keep ADN operate 
safely under any cases. 

Firstly, the optimization variables are classified into 
two parts: c d dr[ ]t t ts sx P  and G c d[ ]t t ty P P P . x 

does not change frequently with fluctuation of  DRG-
output. y can be flexible with the revealed uncertainty. 
Subsequently, the deterministic optimal scheduling 
model can be formulated as a general problem: 

,
min

x y
T Ta x b y                                (10)                                                       
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Where ζ is the vector of DRG-output, a, b,  A,  d1,  B,  
C,  e, d2,  G,  g,  D,  J,  H, h,  u,  v, w are matrix/vector 
form with respect to the original model. 

According to the model addressed above, a two-stage 
framework involving uncertainties is established. In the 
first stage, the vector x is solved to minimize the total 
cost of ADN under the initial scenario ζ0. In the second 
stage, the worst probability distribution of DRG output is 
obtained by optimizing the expected value of the cost 
respective of y when the probability distribution function 
of uncertainties P(ζ) is known. The general stochastic 
power dispatch model is formulated as follows:                                          
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Where X is the feasible region constructed by (11), 
Y(x, ζ0) denotes the feasible region constructed by (12) 
and (13) under the initial scenario ζ0, EP represents the 
expected value. 

Because P(ζ) is difficult to obtain, K discrete 
scenarios (e.g. ξ1, ξ2, …, ξK) are screened out from M 
samples and  the corresponding probability is (p1,… , 
pK ). However, the probability distribution may not be 
exact due to the limited information from the historical 
data. Therefore, the probability distribution of 
uncertainties is allowed to be arbitrary within a pre-
defined confidence set constructed from the historical 
data. Thus, the proposed data-driven stochastic power 
dispatch optimization model aims to find the optimal 
solution under the worst-case probability distribution, 
such that 
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 Two popular confidence sets based on norm-1 and 
norm-∞ were presented for Ω in [14], which can be 
described as follow: 

1

0 0
1

1

0, 1

= { }

, max

K

k k
k

k K

k k k k
k

p p

p

p p p p 







 

 
    





(16)                       

Where pk
0 is the initial probability of the kth discrete 

scenario, θ1 and θ∞ denote allowable probabilistic 
deviation limits under norm-1 and norm-∞ constraints, 
respectively. In [14], for K scenarios from M samples, 
the relationship between the number of historical data 
and θ is described as follows: 
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4 Solution procedure 

The proposed two-stage data-driven optimization model 
generally can be solved by the standard column-and-
constraint generation method (C&CG) [15], which is 
implemented in a master-sub-problem framework: sub-
problem (SP) aims to find the critical scenario of the 
uncertain set for a given first-stage decision variable that 
provides an upper bound; then new variables and 
constraints are added to the master problem (MP) to 
obtain a lower bound. MP and SP are solved iteratively 
and stops until the gap between the upper and lower 
bounds is smaller than a pre-set convergence tolerance.  

MP aims to relax the original optimization model and 
provide a lower bound, which is described as follows: 

(MP) 
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For a given first-stage variables x∗ in the m-th 
iteration, a second-stage bi-level “max-min” model is set 
up to find the worst-case scenario, yielding : 
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Because the sub-feasible regions (Y1,…,YK) are 
separable, lower-level model of the bi-level model can 
be further decomposed into K independent models, 
which are solved in parallel. Let 

 * ,
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k k
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h


 Tb y ,  the 

second-stage “max-min” problem is reformulated as  

*
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 x                                (22)     

MP and the SP are solved iteratively until the given 
convergence criteria is satisfied.  

5 Numerical analysis 

In this section, the approach put forward in this paper 
has been applied for a modified IEEE 33-bus test system 
to illustrate the performance of the proposed model. The 
computational tasks were performed on a 2.9 GHz 
personal computer with 16 GB RAM, and the proposed 
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method was programmed in MATLAB R2016a where 
the mixed integer programming was solved using 
CPLEX 12.8.  

5.1 Test system data 

In this modified 33-bus distribution network plotted in 
Fig. 1, PV and WT located at buses #16 and #31 
respectively are both of 0.5 MW. A gas turbine (GT) is 
installed at bus #4. Two ESDs with ηc and ηd being both 
0.9 are installed at bus #17 and #29 respectively. The 
loads at bus #25 and #32 are both DR with unit 
scheduling cost being 0.32 yuan/kWh. All power factors 
are 0.95. The safe range of voltage is from 0.95 pu to 
1.05 Pu, and the upper and lower limits of line current 
are 4pu and -4pu, respectively. The maximum power 
injected by the main network is 5MW. Other parameters 
are seen in table 1,2. The forecasted load demand and 
DRG output over 24 hours are depicted in figures 2, 
where the DRG output is assumed to follow a 
multivariate normal distribution with the variance 
equivalent to 1/4 of the mean value. 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

26 27 28 29 30 31 32 33
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Figure 1. Modified IEEE33-bus distribution network 

 

 
Figure 2. Prediction value of RESs and load 

Table 1. Parameters of ESD and GT 

ESD 

Pmax
c 

(kW) 
Pmax

d 

(kW) 
Emax 

(kWh) 
Emin 

(kWh) 
kc (￥/ 
kWh) 

Kd (￥/ 
kWh) 

400 400 1200 120 0.4 0.6 

GT Pmax
G 

(kW) 
Pmin

G 

(kW) 
rd 

(kWh) 
ru 

(kWh) 
a(￥/ 
kWh) 

b(￥/ 
kWh) 

400 0 1200 0 0.69 0.69 

Table 2. TOU prices 

Time intervals 
 Electricity price  
（￥/kWh) 

10:00-15:00, 18:00-21:00     1.32 

7:00-10:00,15:00-18:00, 21:00-23:00      0.83 

23:00-7:00     0.37 

5.2 Optimization results and analysis 

We randomly generate 1000 samples by Monte Carlo 
simulation to simulate the set of the historical data. Let 
α1 = 0.2, α∞ = 0.8. The proposed method in this paper is 
applied to acquire the optimal power dispatch scheme. 
The output of each controllable resource is depicted in 
figure 3 and the corresponding cost is shown in table 3. 
From figure 3, it sees that two ESDs are charged during 
the valley-load period from 00:00 to 06:00 at night, and 
discharge to ADN during the peak-load period from 
10:00 to 18:00 in the daytime, which indicates ESDs 
play an important role in peak shaving and valley filling.  

ac
tiv

e
 p

ow
er

 (
kW

)

 
Figure 3. Robust optimal scheduling 

Table 3. Power dispatch cost 

Individual cost (Yuan) Total cost 
(Yuan) C11 C12 C21 C22 C3 

34971.8 1007.3 4800.0 1608.5 326.1 42713.7 
 
The voltage profile of node 33 during 24 hours is 

depicted in figure 4, which shows that the presented 
optimal dispatch scheme ensures that ADN can still 
operate safely in worst scenario of uncertainties. 

 
Figure 4. The voltage profile of bus 33 

5.2.1 Comparison under different confidence set 

M is 1000, and the total cost is listed in table 4 under 
different confidence set. Table 4 shows that the total cost 
goes up with the increase of α1 or α∞. With increase of 
confidence set, the uncertainty will rise, and more 
controllable resources need to be dispatched, which leads 
to larger total cost. 

Table 4. Total cost (Yuan) in case of different confidence set 

α1 
α∞ 

0.5 0.8 0.99 
0.2 42629.8 42713.7 42843.5 
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0.5 42636.2 42765.4 42930.1 
0.99 42636.2 42773.1 43214.9 

5.2.2 Comparison with Traditional Stochastic and 
Robust Approaches 

In this section, the propsed data-driven robust 
optimization (DRO) is compared with the traditional 
stochastic optimization (SO) and robust optimization 
(RO) methods. SO is preceded based on 10 scenarios 
with probability of each scenario being 0.1. RO is tested 
with the fluctuation range being 0.25 times of predicted 
value. α1 = 0.2, α∞ = 0.8. 1000 probability distribution 
scenarios are randomly generated to obtain the average 
and maximum values of network loss expectations as 
shown in Table 5.  

Table 5. Comparison between different algorithms 

Method 
Optimal total  
cost (Yuan) 

Cost Expectation with 
probability distribution 

(Yuan) 
average maximum 

DRO 42713.7 41615.7 43530.8 

SO 41950.0 42470.4 46579.5 

RO 47266.0 43267.7 49048.5 

 
As can be seen from Table 5, RO yields the highest 

network loss because it procede under the worst-case for 
all the possible realizations, while SO only copes with 10 
scenarios, which leads to the lowest optimization results. 
Compared with RO and SO, DRO model achieves a 
better balance in economy and conservativeness. In 
addition, by comparing the expected values of 
probability-distribution cost, it can be seen that DRO 
obtains the lowest probability distribution expectation 
because of taking into account the uncertainty of 
scenarios, which shows DRO is of optimal economic 
performance and uncertainty adaptability. 

6 Conclusion 

Considering the uncertainty of DRG output, a data-
driven robust optimal dispatch model is established in 
this paper for ADN with DGs, energy storage devices 
and demand response of loads. According to the 
historical data, a confidence set constrained by norm-1 
and norm-∞ is constructed for the probability 
distribution of the uncertainties. The proposed method 
aims to find an optimal solution under the worst 
probability distribution. Furthermore, linearization is 
used to simplify the constraints with the absolute term. 
Then C&CG algorithm is employed to decompose the 
second-stage bi-level inner problem into several small-
scale sub-problems which can be proceeded in parallel. 
The comparison with the traditional stochastic and 
robust approaches on IEEE 33-bus test system indicates 
that the proposed model can achieve better optimal 
solution and computational performance than traditional 
methods. 
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