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Abstract. For autonomous vehicles, autonomous positioning is a core technology in their development. A 
good positioning system not only helps them efficiently complete autonomous operations, but also improves 
safety performance. At present, the use of global positioning system (GPS) is a more mainstream 
positioning method, but in indoor, serious shelter and other environments, GPS signal loss will lead to 
positioning failure. In order to solve this problem, this paper proposes a method of mapping before 
positioning, and designs a set of high precision real-time positioning system by combining the technology of 
multi-sensor fusion. The designed system was carried on a Wuling sightseeing bus, and the mapping and 
positioning tests were carried out in the Nanhu Campus of Wuhan University of Technology, the East 
Campus of Mafangshan Campus and the underground garage where GPS signals were lost. The test results 
show that the system can realize the high precision real-time positioning function of the autonomous vehicle. 
Therefore, the in-depth study and implementation of this system is of great significance to the promotion 
and application of the automatic driving industry. 

1 Introduction  

At present, with the development of computer, artificial 
intelligence, information communication and other 
technologies, the trend of informationalization, 
interconnection and intelligence has gradually penetrated 
into all walks of life, bringing more convenient, 
environmentally friendly and intelligent equipment and 
facilities [1]. They are rapidly changing people's life, food, 
clothing, housing and transportation. Among them, 
automatic driving technology is a dazzling pearl, which 
has been widely valued and applied in military, aviation, 
aerospace, industry, transportation, medical treatment, 
life and other fields [2]. In addition, after the epidemic, 
consumers' demand for non-contact or low-contact 
services will continue. Based on this change, the 
development of the automatic driving industry will 
become a larger trend [3]. 

Positioning technology is the core of automatic 
driving technology, which is the premise of autonomous 
operation of autonomous driving vehicles, and also the 
core of automatic driving technology. The most 
important significance of high precision positioning is to 
make automatic driving safer. Only with high enough 
precision positioning can the vehicle plan a relatively 
safe route and improve the safety of automatic driving [4]. 
In addition, autonomous driving requires safety all the 
time. Therefore, the positioning function of high-level 
automatic driving requires not only high accuracy, but 
also higher frequency updates. How to achieve real-time 

positioning of automatic driving is also a very important 
topic. 

Common positioning technology is divided into 
outdoor positioning and indoor positioning two kinds, 
outdoor positioning has base station positioning, GPS 
positioning, etc. Indoor positioning includes BLE 
Bluetooth wireless positioning technology, RFID radio 
frequency identification technology, Wi-Fi positioning 
technology and other methods [5]. At present, most 
autonomous driving vehicles complete positioning 
through differential GPS technology, which can solve 
the problem of positioning accuracy, but cannot solve 
the problem of occlusion and reflection [6]. In a complex 
environment, GPS signals are easily affected greatly, and 
in severe cases, signals are easy to be weakened or even 
lost, leading to positioning failure [7]. In a high-rises 
environment, for example, GPS receivers around tall 
buildings can easily lose all satellite signals in one 
direction. In this case, the positioning accuracy of GPS is 
difficult to meet the requirements of automatic driving. 
In addition, in the intelligent logistics of the factory area, 
because the logistics vehicles have to shuttle indoors and 
outdoors in many factories, the GPS signal is weak 
indoors and easy to be lost, so that the logistics vehicles 
lose some GPS signals in the operation process. 
Similarly, in the tunnel, underground garage and other 
scenarios, it is also easy to cause GPS signal lock loss. 
When the GPS-signal-based autonomous driving car 
encounters the above situation, the problem of inaccurate 
positioning will occur. At the least, the ride experience 
of the passengers will be affected; at the worst, the  
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Fig. 1. Overall structure diagram of the system 

vehicle will run off the road or drive in the wrong 
direction, resulting in traffic accidents, with 
unimaginable consequences [8]. 

Synchronous localization and map construction 
(SLAM), which has emerged in recent years, is the key 
technology to solve the above problems [9]. As the core 
technology of robot positioning and navigation, SLAM 
is attracting increasing attention in the industry. In the 
field of robotics, SLAM has been successfully applied. 
But the SLAM algorithm used for robots is designed for 
highly structured, well-lit environments indoors, not for 
variable lighting outdoors. At the same time, 
autonomous vehicles can run faster than robots, which 
requires faster and more efficient algorithms. According 
to the data, when pure SLAM technology is applied to 
the autonomous driving vehicle for testing, the absolute 
error is relatively large, with an average of about 0.5m 
[10]. The influence of such errors on the positioning 
accuracy of the autonomous vehicle navigation task is 
not acceptable. In other words, the current SLAM 
algorithm of autonomous driving vehicles needs to be 
more accurate and faster [11]. 

In view of the above reasons, through the fusion of 
multi-sensor signals, the system adopts the technical 
method of mapping before positioning to solve the 
problem of high-precision real-time positioning of 
automatic driving vehicles in the absence of GPS signals, 
and popularizes and applies it to all kinds of scenes 
requiring high-precision positioning. 

2 Materials and Methods  

In this paper, a factor graph optimization scheme based 
on various sensors such as lidar, IMU and GPS is 
proposed to optimize laser SLAM by the factor graph 
method and construct a high-precision point cloud map. 
After the construction of the point cloud map is 
completed, the NDT registration algorithm is used to 
determine the optimal match between the two point 

clouds [12]. IMU pre-integration factor, lidar range factor, 
NDT registration factor and closed-loop factor were 
introduced, and the precise positioning function of the 
system was realized through optimization of back-end 
factor graph. At the same time, the point cloud 
segmentation method is used to realize the recognition of 
obstacles and the relative pose estimation to complete 
the relative positioning. The overall structural 
framework of the system is shown in Fig. 1. 

2.1. IMU Pre-integration  

Firstly, the coordinate system and symbols used in this 
system are defined. The world coordinate system is 
represented as w, and the object principal coordinate 
system is represented as b. Meanwhile, for convenience, 
it is assumed that the IMU coordinate system coincides 
with the object coordinate system. Object state X can be 
written as: 

 , , ,
TT T T TX R p v b      (1) 

Where,  3R SO is the rotation matrix, 3p is the 

position vector, v is the velocity, and b is the IMU 
deviation. The change from b to w is denoted by 

= p  T R . 

The kinematics formula of IMU in the discrete state 
can be obtained as follows: 
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Where,  k

k

b a w
wb ka q a b g   , kb g

kb   . 

The average IMU device's data update frequency is 
between 100Hz and 1000Hz, while the lidar's data 
update frequency is generally around 10Hz, which is 
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much higher than the lidar's data refresh frequency. As 
shown in Fig. 2, the current timestamp is i and the point 
cloud timestamp of the next frame is j, so measurement 
data of several IMU can still be received before the point 
cloud data is received in the next frame. The IMU data in 
this period of time are pre-integrated, and the results are 
used for pose estimation and distortion elimination of the 
point cloud data in the next frame. Therefore, the IMU 
product component between the point cloud data of the 
upper and lower frames needs to be solved [13]. 

 

Fig. 2. Schematic diagram of sensor time series data 

The motion model in Equation (2) can be 
transformed into a pre-integral model through Equation 
(3): 

 
t i i twb wb b bq q q    (3) 

According to Equation (2), the IMU data of  ,t i j   
within a period of time are directly integrated to obtain 
the pre-integration component: 
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The integral formula of PVQ after rearrangement is 
as follows: 
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2.2 Lidar Odometer  

Due to the large number of lidar point clouds, direct 
processing will be a waste of computing resources. In 
addition, the point cloud is directly registered iteratively. 
In the case of no obvious difference between each point 
cloud, it is easy to mismatch the point cloud or fall into 
local optimum, and the overall point cloud cannot be 
further registered to reach global optimum. Therefore, it 
is necessary to extract the features of point clouds. Point 
cloud clusters with obvious features in point clouds are 

marked first, and the eigenvalues are calculated. Then, 
laser point cloud registration is performed based on 
feature point cloud clusters to reduce the amount of 
calculation of point cloud registration and the probability 
of mismatching of laser point cloud [14]. 

(1) Feature point extraction 
For Ouster OS1 16-line lidar used in this system, 

feature extraction is carried out for each line according 
to curvature. The specific calculation method is as 
follows: 

1) Point i is defined as a random dot cloud at time k, 
and the nearest ten points in the neighborhood of point i 
are taken as the neighborhood point set S; j is defined as 
the point cloud that does not coincide with point i in the 
point set; 

2) According to the point cloud coordinate 
information, the coordinate of point i at time k in the 

lidar coordinate system is defined as  ,
L
k iX , similarly, the 

coordinate of inner point j in the neighborhood point set 

can be expressed as  ,
L
k iX ; 

3) The average curvature c corresponding to point i 
can be calculated by using Equation (8) as follows: 
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4) In order to make the feature point cloud evenly 
distributed, each radar laser line is evenly divided into 6 
parts (6 sub). 

5) Sort the points in each sub according to the 
curvature, set the curvature threshold k, the points with 
curvature greater than k are angular feature points, and 
the points with curvature less than k are surface feature 
points, and obtain the preliminary feature point cloud. 

(2) Feature point matching 
1) Establish the feature line: take the point cloud 

feature point i as an example at time t, use k-d Tree 
algorithm to find the nearest point j at time t of point i, 
and find the sub-nearest point l centered on j, and take 

point  ,j l  as the corresponding point cloud at time t. 

2) Establish the feature surface: similar to (1), after 
finding the point j, l near the feature point i at time t, 
take point l as the center and use k-d Tree to find the sub-

nearest point m, and take  , ,j l m  as the corresponding 

point cloud at time t. 
3) Constraint equations of characteristic line and 

characteristic surface are respectively established as 
follows: 

 ( , ) ( 1, ) ( , ) ( 1, )

( , ) ( 1, )

( ) ( )L L L L
k i k j k i k l

L L
k i k j

X X X X
d

X X


 



  




    (7) 

 
 ( , ) ( 1, ) ( 1, ) ( 1, ) ( 1, ) ( 1, )

( 1, ) ( 1, ) ( 1, ) ( 1, )

) (( ) ( ))
=

( ) ( )

L L L L L L
k i k j k j k l k j k m

H L L L L
k j k l k j k m

X X X X X X
d

X X X X
    

   

    
  

（  (8) 

After the distance is calculated, if the distance is 
small enough to meet the conditions, the corresponding 
relationship is preserved. 
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2.3 Backend optimization based on factor graph  

The system receives sensor data from 3D lidar, IMU and 
optional GPS. By observing the data from these sensors, 
the state and trajectory of the object can be estimated. 
This state estimation problem can be called the 
maximum a posteriori estimation problem. Since the 
inference of factor graph is more suitable than the 
inference of Bayesian network, a factor graph is chosen 
to model this problem. Meanwhile, under the assumption 
of Gaussian noise model, the MAP corollary of the 
problem is equivalent to solving a nonlinear least squares 
problem [15]. Moreover, without loss of generality, the 
system can further combine the measurement data of 
other sensors, such as altitude measured by an altimeter 
or direction obtained from a compass, to complete the 
state and trajectory prediction of objects. 

For the construction of a factor graph, four factors 
and one variable are introduced. Where, this variable 
belongs to the node in the factor graph, and it represents 
the state of the object at a certain time. The above four 
types of factors are: (a) IMU pre-integration factor, (b) 
lidar odometer factor, (c)NDT registration factor and (d) 
loop back factor. When the pose of the object changes 
beyond the user-defined threshold, a new state node X is 
added to the graph. On this basis, the factor graph can be 
optimized by using ISAM2 algorithm [16]. The processes 
that produce these factors will be described in other 
sections. 

2.4 Obstacle identification and relative pose 
estimation  

Accurate positioning in real time is crucial for 
autonomous driving technology. Therefore, in order to 
ensure the safety of autonomous driving vehicles all the 
time, the local positioning technology of obstacle 
identification and relative pose estimation is also an 
important issue in our mapping and positioning system. 

The purpose of obstacle recognition and relative pose 
estimation is to segment the point clouds of obstacles 
distributed separately in the point cloud coordinate 
system of a single frame driving field scenic spot cloud 
one by one and extract the information of obstacles that 
can be understood and utilized by the autonomous 
driving vehicle. For lidar point cloud, the separation of 
measuring points of different obstacles is obvious. 
Clustering algorithm can usually be used to divide point 
cloud data and separate single obstacle point cloud one 
by one, so as to further extract obstacle object 
information.  

(1) Obstacle recognition based on Euclidean 
algorithm 

The basic idea of Euclidean clustering is to take the 
Euclidean distance between the elements in the data set 
as the criteria for proximity discrimination. If the 
Euclidean distance between the measuring points is less 
than a certain preset threshold, it is considered to be the 
measuring point of the same obstacle. 

For any two measuring points  , , ,i i i i ip x y z l and 

 , , ,j j j j jp x y z l , the Euclidean distance can be 

calculated by the following formula: 

      2 2 2

i j i j i jD x x y y z z        (9) 

For cloud data P of scenic spots in driving field in 
any given single frame of lidar, the basic process of 
neighborhood growth clustering based on Euclidian 
distance is shown in Fig. 3. 

 

 

Fig. 3. Euclidean clustering flow chart 

(2) Relative pose estimation of obstacles based on 
PCA 

PCA principal component analysis (PCA) is an 
important statistical analysis method. It carries out linear 
transformation on the data set of n-dimensional features 
that are related to each other, that is, it transforms the 
data set from the original coordinate space to the new 
coordinate space through translation and rotation, so that 
the data can be represented by the features after rotation. 
The specific process of establishing OBB directed 

bounding box of single obstacle cluster kC based on 

PCA principal component analysis is as follows: 
1) Combine data according to coordinate type; 
2) Calculate the mean value of the data set and 

construct the covariance matrix; 
3) Then the eigenvalue and eigenvector are solved 

according to the covariance matrix, where the larger 
eigenvalue is the direction of the OBB bounding box; 

4) The characteristic vector obtained is the new 
coordinate system, and the original data can be lowered 
to this coordinate system to obtain the length, width and 
center point of the OBB bounding box. 

Thus, the OBB directed bounding box of single 
obstacle clustering was established based on PCA 
principal component analysis method, and the basic 
spatial information of obstacles was extracted to 
complete the spatial information description of obstacles. 

2.5 Loop detection 

Loop detection is a very key part of SLAM, and of 
course, it is also one of the core technologies for the 
construction of high-precision map of autonomous 
driving. Loop detection means that the unmanned system 
can identify the closed loop formed in the mapping 
process of SLAM, so as to optimize the accumulated 
errors from observation. Therefore, the SLAM map can 
be accurately connected at the "stitching point" of the 
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loop, and the repeated measurements in the same section 
can be accurately fitted. Loop detection is very necessary 
for map construction of large area and large scene in this 
system. 

The flow chart of the whole loop detection link of 
this system is shown in Fig. 4. 

 

 

Fig. 4. Flow chart of loop detection 

2.6 High-precision positioning based on NDT  

Now really SLAM to realize autonomous positioning 
system is very difficult, because for the moment pure 
SLAM cannot reach to the requirement of positioning 
accuracy, reliability, automatic driving now study hard 
to realize the online mapping and positioning of 
unmanned systems [17]. Therefore, this work chooses to 
use the NDT registration algorithm to do the positioning 
of the automatic driving system on the premise of having 
a high-precision map, so as to realize the positioning 
function is more realistic and simple. 

(1) Point cloud filtering based on VoxelGrid down-
sampling method 

Automatic driving positioning has high requirements 
for real-time performance, and the less time it takes for 
point cloud registration, the better. Therefore, the input 
point cloud can be de-sampled to improve the speed of 
NDT registration, and the VoxelGrid de-sampled method 
can be used to reduce the density of the input point cloud. 

The principle of VoxelGrid down-sampling 
implemented by PCL is to create a series of three-
dimensional voxel grids through the input point cloud 
data, which is similar to a collection of tiny three-
dimensional cubes in space. Then, in each voxel, the 
barycenter of all points in the VoxelGrid is used to 
display other points in the voxel approximately. The 
specific process is shown in Fig. 5. 

 

Fig. 5. Flow Chart of VoxelGrid Down-sampling Method 

(2) High precision positioning based on NDT 
registration algorithm 

The basic idea of NDT algorithm is to convert the 
reference point cloud (high-precision map) into the 
normal distribution of multi-dimensional variables and 
then carry out matching. The core idea of this 
transformation of the NDT is to map the point cloud to a 
smooth surface represented by a set of local probability 
density functions (PDF), each of which describes the 
shape of a part of the surface. If the transformation 
parameters can make the two laser data match well, then 
the probability density of the transformation point in the 
reference frame will be very large. Therefore, the 
transformation parameter that maximizes the sum of 
probability densities can be obtained by using the 
optimization method, and then the two laser-point cloud 
data will match best [18]. The specific steps of NDT 
algorithm are as follows: 

1) Divide the space occupied by the reference point 
cloud into grids or voxels of specified size, and calculate 
the multi-dimensional normal distribution parameters of 
each grid: 

 1
ii

q x
n

    (10) 
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i ii
x q x q

n
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Where, q is the mean value;  is the covariance 

matrix; ix represents all scan points in a grid. 

2) Set initialization transformation parameters, that is, 
the pose to be estimated: 

  , ,
T

x yp t t    (12) 

3) For the point cloud that needs registration, 
transform it into the grid of the reference point cloud 
through transformation T: 
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4) Calculate the probability density of each 
conversion point according to the normal distribution 
parameters: 

      1

exp
2

T
x q x q

p x
  

 
 
 

   (14) 

5) NDT registration score is obtained by adding the 
calculated probability densities of each grid: 

      1' '

exp
2

T

i i i ii

i

x q x q
score p

    
 
 

   (15) 

(6) Newton optimization algorithm is used to 
optimize the objective function score , that is, to find 
the transformation parameter p to maximize the value of 
score  . 

3 Results & Discussion 

This test is divided into two parts: large-scale drawing 
construction and vehicle positioning. Data collection and 
testing are carried out on the Wuling sightseeing vehicle 
as the carrying platform, as shown in Fig. 6. In order to 
avoid the interference of dynamic objects to the 
algorithm, data collection was carried out at a time when 
there were few people and vehicles. The vehicle speed 
was kept at about 20km/h. Multiple data collection was 
carried out to build a large-scale point cloud map. The 
vehicle positioning test was carried out on the 
established high-precision map. In order to verify the 
positioning accuracy of the system, the value of 
differential GPS was taken as the reference value in the 
same scene, and the positioning result was compared 
with the trajectory of differential GPS. 

 

Fig. 6. Test Platform -- Wuling Sightseeing Car 

3.1 Large-scale drawing test  

Team members designed a series of experiments to 
qualitatively and quantitatively analyze the proposed 
framework. The sensor suite used in this system includes 
Ouster 32-wire lidar, IMU and differential GPS as signal 
input to the system. In addition, differential GPS is used 
as the control group to provide real values for the 
verification of system performance. In order to ensure 
the universality of the experimental results, the tests 
were carried out in Nanhu Campus of Wuhan University 
of Technology, East Campus of Mafangshan Campus of 
Wuhan University of Technology and underground 

garage respectively. The detailed information of these 
data sets is shown in Table 1. 

Table 1. Dataset details 

Serial 
Number 

Radar 
Frames 

Elevation 
Changes(m) 

Total 
Mileage(m) 

Nanhu  2476 8 1800 
Mafangshan  1859 9 1650 

Garage 2219 8 750 

 
A. Wuhan University of Technology Nanhu Campus 

To collect the data set, test subjects drove a Wuling 
sightseeing car along the main road of Wuhan University 
of Technology's Nanhu campus and returned to the same 
location six minutes later. This test included loop paths 
to provide loop factors to the system for global 
consistency optimization. The GPS data received was 
only used during initialization to compute the vehicle 
attitude and align the vehicle coordinate system to the 
world coordinate system. The results of drawing 
construction using this system are shown in Fig.7. 

   

Fig. 7. (left) main view (middle) top view (right) side view 

B. Wuhan University of Technology, Ma Fangshan 
Campus East Campus 

The test subjects drove a Wuling sightseeing car to 
collect a set of data in the East Campus of Wuhan 
University of Technology's Mfangshan Campus, where 
buildings, trees and other shielding objects are less, so 
GPS signals can be obtained more accurately and multi-
stage loop detection is convenient at the same time. After 
data collection, LIO-SAM algorithm was used to build 
the map, as shown in Fig. 8. 

   

Fig. 8. (left) main view (middle) top view (right) side view 

C. Underground parking 
After completing the first two groups of tests, the 

team members further used the system to construct the 
point cloud map in the underground parking lot where 
the GPS signal was lost. The construction results are 
shown in Fig. 9. 

   

Fig. 9. (left) main view (middle) top view (right) side view 
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It can be seen that the system can construct a high-
precision map with rich information even when the GPS 
signal is completely lost. 

3.2 Vehicle positioning test  

The team uses the NDT positioning algorithm to achieve 
real-time positioning on the established high-precision 
map. The positioning process is shown in Fig. 10. 

 

Fig. 10. Autonomous positioning process of the system 

In order to verify the superiority of the positioning 
accuracy of this system, the value of differential GPS 
was taken as the control value in the same scene, and the 
positioning result was compared with the trajectory of 
differential GPS. The positioning trajectory in scenes A 
and B is shown in Fig. 11. 

  
Fig. 11.  

(left) Positioning trajectory under the satellite map of scene A 
(right) Positioning trajectory under the satellite map of scene B 

It can be seen from the above figure that the 
trajectory of NDT algorithm is stable and accurate. 
According to the calculation, the horizontal error and 
rotation error of NDT algorithm have been kept in a 
small range. On the whole, the high precision pose 
estimation based on NDT algorithm shows good 
performance, and the positioning trajectory with high 
accuracy can be obtained. 

In addition, the mean square error of the key frame 
pose and the differential GPS output pose is chosen as 
the expression quantity of the mapping accuracy. The 
MSE of the two data sets of Wuhan University of 
Technology Nanhu Campus and the East Campus of 
Mafangshan Campus are calculated respectively, namely, 
the accuracy of positioning. The results are shown in 
Table 2: 

Table 2. MSE of key frame pose in the process of positioning 

Scenario Mean Square Error(m) 
Nanhu  0.14 

Mafangshan  0.10 

 

4 Conclusions 

In this paper, based on SLAM technology, a mapping 
first and localization second method is proposed. 
Combined with multi-sensor fusion technology, this 
method solves the problem that the automatic driving 
system cannot realize accurate localization when the 
GPS signal is weakened or lost. The method was verified 
on a Wuling sightseeing bus, and the large-scale 
mapping and positioning functions of the system were 
tested. Through the calculation and analysis of the test 
results, it is successfully proved that it can accomplish 
the high precision real-time positioning function without 
GPS signal, which reaches the experimental expectation. 
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