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Abstract.  The article deals with modeling the process of force load 

generation at an initial periodic change in pressure (a plane problem). The 

subject of research is a pulsating flow in a flat channel at an initial periodic 

pressure change. The determination of flow parameters with a periodic 

change in the inlet pressure; the changes in the structure of the working 

fluid associated with the release of various particles from the pipe walls, 

the addition of impurities to prevent leaks, and the high-speed modes, are 

given in the article considering the law of molecular and molar transfer 

between layers. Research methods are based on Newton's rheological law, 

according to which molecular transfer is described by the law of 

proportionality of stresses to the derivative of the normal velocity; on the 

method of accounting for molar transfer by proportionality of stresses to 

the derivative of normal acceleration; on the method of mathematical 

modeling and the analytical method for their solutions, based on the 

provisions of operational calculus. An analytical solution to the problem of 

pulsating fluid motion in a plane-parallel channel is obtained with 

allowance for single and group transfer of molecules in the flow. The 

application of the analytical expressions obtained for the velocities is not 

limited to the critical Reynolds number, i.e. they are applied for any values 

of this number. Analytical expressions are obtained for the transverse and 

longitudinal components of the flow velocity. The resulting solution 

describes two zones of flow: in the first zone, two types of transfer occur, 

depending on the flow pattern, either molecular or molar transfer of fluid 

volumes between the layers prevails. In the second zone, only molecular 

transfer occurs. 

1 Introduction 
Pulsating flows of fluid ensure the existence of biological and social objects and they 

are an integral part of the technological production processes. The flow in a sudden 
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expansion channel and its flow through an idealized curved coronary artery with a pulsating 

velocity at the inlet was studied in [1]. A pulsating flow for thermohydraulic analysis of a 

nuclear reactor in an oceanic environment was investigated in [2]. Modeling a pulsating 

inlet flow to study the performance of flutterbased energy harvesters [3] and the effect of 

pseudo-plastic fluid flow in a manifold microchannel heat sink [4] is the evidence of the 

widespread use of pulsating flow.

Investigations of pulsating fluid flow are conducted by experimental [5, 6] and 

theoretical methods [3, 4]. Theoretical studies of this process are conducted using the 

Navier-Stokes equations. The Navier-Stokes equations are derived with Newton's law, 

according to which the stress is directly proportional to the derivative of the normal 

velocity, which describes the molecular transfer of momentum between the layers of the 

flow. This corresponds to a homogeneous layered fluid flow. Under the pulsating motion,

conditions for the accumulation of inhomogeneity are formed in the flow, the alignment of 

which occurs during the groupped motion of molecules.

In hydraulic drives and other structures, wear products are formed in the working fluid, 

and to improve performance and prevent leaks in the system, various additives are added to 

the fluid. Moreover, high speeds and pressures arise in various modes. Taking into account 

all these factors, hydrodynamic processes cannot be described using classical models.

In this study, to account for the transfer of a substance between layers at the molecular 

level, it is assumed that the stress is directly proportional to the derivative of the normal 

velocity, and with all the above circumstances, during molar transfer, the stress is 

proportional to the derivative of the normal acceleration [7, 11]. Taking into account the 

new factor, the internal structure of the Navier-Stokes equations undergoes substantial

changes – the terms in partial derivatives of the third order are formed in the equation [7, 

11]. There are many methods and algorithms for the numerical solution of these equations 

[8, 9]. Applying these tools to solving problems by involving new complicated equations is 

laborious work. There are various methods for the analytical solution of problems: the 

method of separation of variables, the method of linear approximation, the Fourier method 

[10] or the method of involving the provisions of the operational calculus [7, 11]. In the 

problem considered below, we used the method of involving the provisions of the 

operational calculus.

2 Methods  
Research methods are based on Newton's rheological law, the equation of continuity, 

which expresses the law of conservation of mass; the method of mathematical modeling 

and the analytical methods for their solution, based on the provisions of operational 

calculus.

3 Materials
Let us consider a plane-parallel pulsating flow of fluid, taking into account the molecular 

and molar transfer in the flow. The system of equations of fluid motion, in this case, has the 

following form [7, 11]:
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Where  �,� –are the coordinates; t is time; V1, V2 are the velocity components; � is the

pressure; � is the dynamic viscosity; me is the molar transfer coefficient.

The pressure gradient is given as:
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here � is a parameter that takes into account the instantaneous transition of the velocity at �
= 0 from the state of rest in terms of velocity u0=�onst.

In order to obtain an analytical solution to this problem, we introduce the following

function:
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applying the Laplace transform in the variable t , we obtain
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which is subject to the following conditions:
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We introduce function ( , , ) ( , , ) ( ),w x r p u x r p A p� 	 and apply the Laplace 

transform in x to the resulting equation, and a second-order differential equation with 

respect to the function w is obtained:
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there is a solution:
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Here �, S are the parameters of the Laplace transform in t and �, respectively. 
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Using the Cauchy theorem [12], we obtain:
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now (2.8) is written as:
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Performing the inverse transformation sequentially with respect to parameters s and p
from [12], we obtain:
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where
1, 0

( )
0, 0

t
t

t
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is the unit Heaviside function. 

From (2.12) it follows that there are two zones in the flow
00 l �x u m t$ �* * and 

0 l nx u m t$ �� . For the second zone, the solution takes the following form:
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Moving on to the initial functions, we finally determine:
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4 Results and discussion  
An analytical solution to the problem of plane-parallel pulsating flow of fluid is obtained, 

taking into account the molar transfer in the flow. From the expressions obtained for the 

velocity components, it is seen that two flow zones are formed in the flow, and in one of 

them, the longitudinal velocity does not depend on the x coordinate.

The following results (conclusions) were obtained based on the study: 

1. The application of the analytical expressions obtained, for the velocities is not limited 

to the critical Reynolds number, i.e. they are applied for any values of this number, and also 

describe the annular Richardson effect, which is of great practical importance in reducing 

hydro-erosion in pipes transporting suspensions, dusty gases and other substances.

2. The solution obtained shows that there are two flow zones: in the first zone there are 

two types of motion, depending on the nature of the flow, where either molecular or molar 

transfer of fluid volumes between the layers prevails. In the second zone, only molecular 

transfer occurs. This means that with time, the flow passes into the limiting mode. 

3. The calculations have shown that, with the corresponding molar transfer coefficients 

for different values of the Reynolds number, analytical expressions for the velocities 

describe the fluid flow with a periodic law of pressure change in laminar and turbulent flow 

modes.
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