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Abstract. Flood disasters have become one of the most threatening natural disasters in the world, in which 
waterlogging is the most common form in the context of highly urbanized megacities. The formation of 
flood disaster is related to many factors and involves information from multiple sources, making it difficult 
be predicted. This paper integrates multi-source information data, classifies the study area into different 
categories according to hydrological analysis results, and combines hydrodynamic theory and ArcGIS to get 
the quantitative prediction of the range and depth of waterlogging under different rainfall inputs. The 
evaluation results provide the government with accurate and timely information of waterlogging risks and 
locations in order to improve promptness of emergency management such as evacuation and managing 
traffics. 

1 Introduction  

1.1 Background 

With the fast pace of urbanization, cities have been 
expanding rapidly with boosting population density and 
rate of land development. Flood disasters have become 
one of the most threatening natural disasters in the world 
given their high frequency, wide coverage and 
significant destructiveness. As a typical type of flood 
disaster, urban waterlogging, commonly caused by 
heavy rain, has become an important factor that seriously 
threatens urban safety. In developed cities, rainfall 
accumulates in a large number of low-lying areas formed 
in the process of urbanization. Insufficient drainage 
capacity exacerbates the risk of waterlogging [1]. 

When encountering some extreme rainstorm or 
typhoon events, the intensity of the rainstorm far exceeds 
the designed drainage capacity, and the surface water 
cannot be discharged in time, resulting in surface runoff 
and stagnant water [2]. The identification of urban 
waterlogging and inundation risk can help predict the 
distribution range, depth and flow rate of accumulated 
water under different rainstorm intensities. Besides, 
visualization technologies are desired to be applied to 
generate rainstorm risk maps providing decision-making 
suggestions for predicting urban waterlogging under 
extreme rainstorms [3]. Therefore, for the vulnerable 
areas, early warning information should be issued to the 
citizens in advance to help urban decision-makers 

formulate targeted traffic control measures and 
emergency control plans. 

For megacities with large population, numerous 
buildings, and complex municipal engineering systems, 
especially the coastal ones that are directly exposed to 
typhoon disasters, risk of urban waterlogging is much 
higher [4], yet not much research has focused on such 
scenarios. The current research combines SWMM, 
MIKE FLOOD and other models to simulate an area 
with detailed drainage information and analyze the risk 
of urban waterlogging. The Futian District of Shenzhen 
located in southern China is selected as a typical highly 
urbanized area in a global megacity, upon which 
waterlogging risk analyses are conducted based on 
multiple rainfall input scenarios with practical policy 
implications suggested. 

1.2 Literature review 

Statistical methods with advanced algorithms have been 
applied to identify vulnerable areas of floods. Chau et al. 
used K-nearest neighbors techniques to locate inundated 
areas in 2005 [5]. Hong et al. used statistical methods to 
draw flood-sensitive maps in 2016 [6]. Tehrany et al. 
carried out multivariate statistical method to identify the 
submerged area in 2014 and 2017, respectively, such as 
genetic programming, artificial neural network, fuzzy 
logic model, etc. [7] D’Addabbo et al. used statistical 
model based on static Bayesian networks to detect flood 
in 2016.  

E3S Web of Conferences 259, 01004 (2021) https://doi.org/10.1051/e3sconf/202125901004
ICESD 2021

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



ICESD 2021 

Several scholars also use hydrodynamic models to 
simulate flood routing. Samela et al. applied the idea of 
river hydrology to flood routing simulation in 2015. 
Chen developed a two-dimensional coupled model based 
on SWMM and SWM to analyze rainstorm and 
waterlogging in 2019 [8]. However, hydrodynamic 
models require highly precise data, among which 
detailed urban underlying surface data is generally 
necessary. Although relatively fine simulation results 
can be obtained, the comprehensive and large-scale 
calculations are commonly required. Therefore, it is 
difficult to be applied to large-scale urban flood risk 
identification. 

In recent years, many scholars have used machine 
learning methods to identify inundation areas based on 
historical inundation data. Lamovec et al. used machine 
learning methods such as decision tree (DT) and random 
forest (RF) to detect flood-prone areas in 2013 [9]. 
Tehrany et al. tested the computational efficiency of DT 
in this application. Some scholars also applied integrated 
algorithms such as adaptive-network-based fuzzy 
inference system (ANFIS) and genetic algorithm based 
artificial neural network to identify waterlogging risk 
areas [10]. Ke et al. applied machine learning approaches 
to simulate urban flooding in the Shenzhen city [2].  

With the improvement of the accuracy of remote 
sensing images and digital elevation models (DEM), the 
submergence information extraction model based on 
remote sensing images is used to identify the 
submergence risk. This method compares the remote 
sensing images before and after the occurrence of flood 
disaster in a certain area to directly extract the 
submerged range and depth of water. Combined with 
meteorological data, it can provide reference for risk 
identification and early warning. However, due to the 
lack of simulation of the flood process and the scarcity 
of remote sensing satellite resources, it is difficult for 
them to be widely used in a short time [11]. 

As the process of formation of waterlogging is 
complicated, the above studies have considered many 
factors that may lead to urban waterlogging. Generally, 
factors such as DEM, aspect and slope, rainfall intensity, 
land cover type and drainage capacity will be considered. 
However, some of these studies are still in the qualitative 
risk analysis stage and can only assess the risk of 
waterlogging in certain areas with only part of the 
crucial factors considered [11]. Fusion of multi-source 
information that integrates meteorological, geographic, 
and municipal engineering information is of great need. 
Combining statistics and hydrodynamic models is 
capable of quantifying certain details of the process and 
more precisely identifying the coverage and depth of the 
waterlogging area, which is more conducive to the 
government to judge the extent of disaster damage, 
classify risk levels and take early warnings. 

2 Study area and data 
The study area is the Futian District, which is the central 
district of the Shenzhen city located in the Guangdong 
Province, China. The total area of the Futian District is 

78.8 square kilometers. The terrain is mainly composed 
of plains, hills, mountains, and beaches. There are 
mountains in the north and the sea in the south. Located 
in the south of the Tropic of Cancer, Futian District in 
Shenzhen is a subtropical maritime climate zone with 
sufficient rainfall, with an average annual rainfall of 
1,866 mm. The rainfall is mainly concentrated in June 
and August. In August, there are frequent typhoons and 
heavy rain extreme weather. Futian District has a high 
level of urban development and high economic density. 
In 2020, the permanent population will exceed 1.66 
million. Although the area only accounts for 4% of the 
city's total area, its GDP accounts for 16.9% (454.6 
billion Yuan) of the city's GDP (2692.7 billion Yuan).  

Table 1 shows the factors related to the formation of 
urban waterlogging disasters for this study, including the 
data sets corresponding to each factor and the scale and 
precision of each data set. 

Table 1. Data description. 

Item Data description Scale/Precision 

DEM Realize digital simulation of 
ground terrain through 

limited terrain elevation data 

5m*5m 

Land 
cover type 

Current status of all land use 
in the city, including 

construction land, broad-
leaved forest land, 

coniferous forest land, water 
bodies, wetlands, etc. 

30m*30m 

Building 
height 

Building vector files 
containing building location, 

height, number of floors, 
floor space, etc. 

0.01m 

Drainage 
system 

Rainwater outlet vector file, 
including location, orifice 

size, orifice shape 

0.001m 

Runoff 
coefficient 

The proportion of 
precipitation converted into 

surface runoff 

0.1 

Rainfall 
intensity 

Rainfall per unit time 0.01mm/min 

3 Methods 

3.1 Influential factors 

The formation of urban rainstorm waterlogging is related 
to many factors, mainly containing three categories: 
positive correlation factors, distribution influencing 
factors and negative correlation factors [12]. 

3.1.1 Positive correlation factors 

Incremental factors, including rainfall intensity and 
rainfall duration, are positively correlated with the scale 
of waterlogging. The return period of a specific 
rainstorm intensity refers to the average interval time 
between the occurrence of a rainstorm intensity greater 
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than or equal to this value, and it is inversely 
proportional to the frequency. As the rainfall intensity 
and rainfall duration increase, the total rainfall increases. 

3.1.2 Distribution influencing factors 

Such factors are mainly related to topography, landforms 
and surface structures. Rain causes surface runoff to 
continue to increase, and overflowing surface runoff 
flows horizontally from high terrain to low terrain areas 
under the influence of gravity. The continuously 
increasing surface runoff cannot be discharged in time 
by the drainage system, thus forming stagnant water in 
low-lying areas. In terms of rainfall process, the range 
and depth of stagnant water generally increase 
continuously. 

3.1.3 Negative correlation factors 

Certain factors have a negative correlation with the 
formation of waterlogging, including infiltration capacity, 
drainage capacity, and evaporation. 

This paper uses multi-source data fusion technology 
to divide the research area into 596 irregular sub-
catchments based on geographic characteristics and 
confluence processes. Each sub-catchment contains all 
the attributes of factors related to the risk of 
waterlogging. Taking the sub-catchment area as the basic 
calculation unit, combined with the Manning equation in 
hydrodynamics, Horton infiltration curve and other 
formulas to calculate the depth of water accumulation 
and flow velocity, the calculation results with higher 
accuracy can be obtained. Use the analysis and 
visualization functions of ArcGIS to draw a 
waterlogging risk map that includes the range and depth 
of stagnant water. 

3.2 Rainfall model 

The Futian District of Shenzhen often suffers short-term 
heavy rainfall brought by typhoon disasters in August. In 
order to simulate a variety of extreme rainstorm that the 
area may suffer, based on the rainstorm intensity 
Equation (1) published by the Shenzhen Meteorological 
Bureau in 2015, the return period is set to 5, 30, and 100 
years, and the peak rainfall is 0.4. By using Chicago 
rainfall process model, three simulated rainfall input 
models are obtained, as shown in Fig. 1. 

167 (1 )

( )n

A Clgaq
t b
+

=
+

                        (1) 

where q is the rainfall intensity; a is the return period 
of heavy rain; t is the rainfall duration; A, C, b, n are the 
rain force formula parameters. 

 

Fig. 1. Chicago rain patterns of 5-year, 30-year, 100-year 
return period. 

3.3 DEM with building height 

The original DEM can only display surface elevation 
data, not including buildings on the ground. But in the 
process of flood routing, water flow will be blocked by 
buildings and change its flow direction, which will 
eventually affect the spatial distribution of stagnant 
water. The Futian District has a high density of buildings, 
especially high-rise buildings. In order to simulate the 
blocking effect of buildings on water flow, the vector 
data containing building height information is 
superimposed with the original DEM using ArcGIS 
raster calculator. Fig. 2 is the new DEM coupled with 
building height information. 

 

Fig. 2. DEM with building height (min = -9.14 m, max = 
387.27 m). 

3.4 Analysis of water flow process 

The water flow process is mainly based on the D8 
algorithm. The principle is to assume that the water flow 
in a single grid can only flow into the lowest one among 
the 8 adjacent grids (Fig. 3). It uses the steepest slope 
method to determine the direction of the water flow (Fig. 
4). It is characterized by fast calculation speed and can 
well reflect the effect of topography on the formation of 
surface runoff. The D8 algorithm can be used on the 
DEM data that has been filled to obtain the unique flow 
direction value of each grid. The hydrological analysis 
tool of ArcGIS can calculate the flow value of all the 
grids in the Futian area and further calculate the flow 
accumulation (Fig. 5, Fig. 6). This value represents the 
number of grids that the target grid receives upstream 
confluence. The flow accumulation cannot represent the 
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final flow result, but it provides theoretical support for 
runoff movement and sub-catchment division [13]. 

 

Fig. 3. Schematic diagram of D8 algorithm. 

 

Fig. 4. Topographic slope of Futian District.  

 

Fig. 5. Flow direction. 

 

Fig. 6. Flow accumulation. 

3.5 Sub-catchment division 

In the urban-scale waterlogging prediction research, in 
order to improve the prediction accuracy and calculation 
efficiency of the model, the research area can be divided 
into tiny sub-catchments based on the results of 
hydrological analysis. When dividing the sub-catchment 
area, we define the lower limit of the catchment area that 
can generate surface runoff as 40,000 square meters, 
which is equivalent to a rectangular area of 200m × 
200m. Confluence areas smaller than the lower limit are 
no longer divided separately. It is unified into other 
confluence areas. The basis for this division is that on 
one hand, it is difficult to form large-scale stagnant water 
in an area generally smaller than 200m × 200m in reality; 
on the other hand, it is to improve the calculation 
efficiency of the model. In the study, the catchment area 
of 40,000 square meters corresponds to the cumulative 
value of 1600. Fig. 7 further classifies and links the 
cumulative flow. Fig. 8 shows the 596 sub-catchments. 
 

 

Fig. 7. River link and runoff vector. 

 

Fig. 8. Total 596 sub-catchments. 

3.6 Surface runoff coefficient 

The Futian District is the central district of Shenzhen, 
with 5909 hectares of construction land, accounting for 
74.9%. Urban construction land is mostly asphalt, 
concrete, and cement surfaces, which have high surface 
runoff coefficients and weak rainfall infiltration capacity. 
The runoff coefficient of woodland, grassland and 
wetland is small, and the ability to accumulate rainfall is 
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strong. According to the land cover type data in the 
Futian District (Fig. 9), the surface runoff coefficient in 
this area is 0.95 for construction land, 0.65 for broad-
leaved forest and grassland, 0.65 for coniferous forest, 
0.7 for water bodies, and 0.75 for wetland and irrigated 
fields [14]. In view of the actual situation of land use in 
Futian District, this study extracts the proportion of each 
land type, and obtains the average runoff coefficient of 
each sub-catchment through weighted calculation (Fig. 
10). 
 

 

Fig. 9. Land cover type. 

 

Fig. 10. Average runoff coefficient of each sub-catchment. 

3.7 Evaluation of drainage capacity 

By analyzing the distribution of 37,845 rainwater outlets 
in the Futian District, a generalized evaluation model of 
drainage capacity was established. Almost all rainwater 
discharge outlets in the Futian District are flat 
rectangular discharge outlets. According to the number, 
shape and size of the drainage outlets in each sub-
catchment area, the drainage capacity per unit time can 
be expressed as Equation (2). Combined with rainfall 
duration, the total drainage volume of each sub-
catchment area can be calculated [15]. 

2dQ s gh=                               (2) 

where Qd is the drainage flow (m³/s); μ is orifice flow 
coefficient; s is drainage area (m2); h is the water depth 
(m). 

3.8 Depth of waterlogging 

Different types of data from multiple information 
sources are merged with sub-catchments as storage units. 
Each sub-catchment contains DEM with building height, 
average slope gradient, average surface runoff 
coefficient, catchment area, average roughness, rainfall, 
drainage intensity and other index attributes [12]. 

Although each sub-catchment area is divided 
according to an independent water catchment process, 
the flood routing has integral characteristics. When the 
Futian District is used as a unified research area, the 
water flow connection of each sub-catchment area needs 
to be considered. Because urban roads are generally low-
lying, rainwater drains are on both sides of the road and 
the road network has strong connectivity. In the flooding 
routing, floods flow and spread through urban roads in 
the form of surface runoff. By analyzing the 685 main 
roads in Shenzhen, the city includes 390 arterial roads, 
264 first-class highways, 17 expressways, and 14 
highways. Because expressways generally have high 
roadbeds or an elevated form, waterlogging is not easy to 
occur. The average width of 671 arterial roads, first-class 
highways and expressways in the studied area is 23.3 
meters. Assuming that the water flow between the 
upstream and the downstream sub-catchment areas is 
mainly connected by the lowest road and the road is 
simulated as a U-shaped channel, Equations (3) to (7) 
can be used to determine the flow, velocity, and depth of 
water accumulation [16]. 

rQ aq A=                              (3) 

where Qr is the surface runoff flow (m³/s); q is the 
average rainfall intensity (mm/min); φ is the average 
runoff coefficient of the sub-catchment; A is the area of 
the sub-catchment (m2); a is the unit conversion factor, 
which is equal to 1/60000 in this case. 

The surface runoff velocity, v, can be calculated as: 

 

2 1
3 2R iv
n

=                                  (4) 

where v is the surface runoff velocity (m/s); R is the 
hydraulic radius; i is the average slope gradient of the 
sub-catchment area (%); n is the surface roughness. 

 
1
2( )Q SC Ri=                             (5) 

where S is the cross-sectional area of the water (m2), 
C is the Chézy coefficient. 

The Chézy formula can be expressed as: 

1
6RC

n
=                               (6) 

in which the hydraulic radius, R, is commonly 
expressed as: 
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S dwR
X d w
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                        (7) 

where w is the width of the water cross section (m), 
that is the average width of the road; X is the wet 
perimeter of the water cross section (m); d is the depth of 
waterlogging (m). Waterlogging generally appears at the 
boundary of the sub-catchment area, because these areas 
are the lowest point of terrain and have a large flow 
accumulation value. 

4 Results and discussions 
After the range and depth of the waterlogging under each 
rainfall input scenario are calculated, the waterlogging 
results can be superimposed on the satellite image for 
display through ArcGIS. Fig. 11 shows the spatial 
distribution of waterlogging with depths. The darker 
color represents the deeper waterlogging. The depth of 
the waterlogging (Table 2) ranges from 0 meters to 0.189 
meters for the 5-year-return period, from 0 meters to 
0.225 meters for the 30-year-return period, from 0 
meters to 0.246 meters for 100-year-return period. 
Comparing the three rainfall models, as the rainfall 
intensity increases, the area and depth of waterlogging 
increase, and the risk of waterlogging increases. There 
are 159, 175, 186 catchments with waterlogging for three 
different return period of heavy rain. Average depths of 
waterlogging are 6.94cm, 7.78cm and 8.35cm, 
respectively. In Fig. 11, the distribution of waterlogging 
is mainly concentrated in low-lying areas, almost no 
water in high altitude areas. At the foot of the mountain, 
because of the insufficient drainage facilities in the 
mountainous area, the rainfall flows down the slope and 
gathers in the low-lying areas at the foot of the mountain. 
The drainage facilities in the urban area are very 
complete, and the accumulated water can be discharged 
timely. The result of the waterlogging in the southwest 
and southeast is that these two areas are new land formed 
by reclamation and lack drainage data in these areas. The 
municipal department should strengthen the construction 
of drainage facilities in waterlogged areas especially the 
neighboring mountain areas and pump water in the 
waterlogged areas when suffering from heavy rain. 

 

 

Fig. 11(a). Waterlogging for a = 5. 

 

Fig. 11(b). Waterlogging for a = 30. 

 

Fig. 11(c). Waterlogging for a = 100. 

Table 2. Statistics of waterlogging depth in 596 catchments. 

 a = 5 a = 30 a = 100 

Number of 
catchments 

without 
waterlogging 

437 421 410 

Number of 
catchments with 

waterlogging 
159 175 186 

Average of 
waterlogging 
depth (cm) 

6.94 7.87 8.35 

Median of 
waterlogging 
depth (cm) 

6.46 7.36 7.66 

Variance of 
waterlogging 

depth 
14.90 21.62 23.30 

5 Conclusions 
This paper uses multi-source information fusion 
technology to deeply integrate meteorological 
information, geographic information, and municipal 
engineering information. ArcGIS is used to realize the 
hydrological analysis process of horizontal flow after 
rainfall is transformed into surface runoff. Based on a 
tradeoff between the efficiency and accuracy of the 
calculations, 596 irregular sub-catchments were defined, 
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giving rise to a macroscopic analysis of urban rainstorm 
waterlogging. Comprehensive consideration of rainfall 
intensity, rainfall duration, DEM, building height, slope, 
aspect, current land use, and regional drainage capacity 
to perform urban flooding prediction and risk 
identification. 

This research provides emergency management 
authorities with timely and quantitative decision-making 
information by reasonably identifying risky areas to 
release early warning signs and reduce casualties and 
property losses caused by urban waterlogging. For the 
traffic planning department, it is possible to predict the 
stagnant water area in advance and release information 
on the roads affected by disasters for citizens in real time. 
For the navigation service providers, the navigation 
algorithm can be improved to avoid the stagnant water 
section in advance and create a more reasonable and 
efficient route plan. It can also provide disaster 
assessment references for emergency dispatching 
departments, assess the accessibility of rescue services in 
important areas, optimize the layout of rescue stations 
and the rescue force dispatch plan. 
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