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Abstracts. The 4 degree of freedom robot arm of a table tennis robot has a 
variety of trajectories. In order to improve the response and the success rate 
of the shots, we used the joint space trajectory planning method to establish 
a kinematic model with the robot arm joints as variables, and by combining 
it with the robot arm kinematics, we obtained the relevant parameters for 
each joint of the robot arm. Simulation tests and physical tests were carried 
out to obtain a more accurate trajectory of the robot arm. 
Keywords: 4 degrees of freedom robotic arm; Path planning; Joint 
parameters; Robotic arm simulation. 

1 Introduction 
In order to promote the intelligence of the sport we have developed a table tennis robot, 

which in this paper only focuses on the robot arm. A common problem among all types of 
robots that can be used for human-robot sparring is that they are not accurate enough to hit 
the ball[1]. Often the racket does not reach the specified position or the racket reaches the 
specified position after the ball, but the trajectory planning is not perfect. The so-called 
trajectory planning is: every movement of the robot arm will form a certain trajectory in space. 
The trajectory refers to the position, velocity and acceleration of each degree of the robot 
arm’s freedom in the predetermined coordinate system of the time course. Trajectory 
planning can be divided into two cases, Cartesian space planning and joint space planning. 
Most traditional human-robot sparring robots use Cartesian spatial planning, using the 
homeopathic coordinate nodes of joints in space to constitute trajectories, which may result 
in singularities, causing instability of trajectories. In this paper, based on this problem, the 
method of joint space trajectory planning is used to simulate the robot arm as a kinematic 
model with joints as reference variables, and by combining the model with the kinematic 
laws of the robot arm, the relevant parameters of each joint can be obtained, and the best path 
selection is finally completed[2-5].  

2 Principle of trajectory planning 
We carry out the path planning of the robot arm by means of joint trajectory planning, where 
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the joints are variable and their position, velocity and acceleration are represented as smooth 
functions of time by studying the relationship between the motion of the joints and the time 
angle and velocity. We have chosen a polynomial representation by comparison, which 
allows a good match between the initial and end boundary positions[6-8]. We use a cubic 
polynomial interpolation, which requires at least four constraints, the initial angle θ(0) at time 
t0, the initial angle θ(tf) at time tf, and the joint velocity of zero at the initial and terminal 
moments in order to ensure that the joint velocity is continuous, so the four constraints are: 

��0� � ��; ����� � ��;����0� � 0;������� � 0                (1) 

With these four constraints we can uniquely determine a cubic polynomial which is 
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From the inverse solution of the kinematics of the robot arm we already know that: 
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Bringing the four constraints into the above equation yields four equations containing 
four unknown quantities: 
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The solution yields: 
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If the arm is required to pass each intermediate point in succession, and if the desired 
velocity of each joint at the intermediate point is known, the constraint is then： 
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3 Simulation model construction and data analysis 

3.1 Simulation and data logging 

       
Fig. 1. Simulation Model of manipulator.             Fig. 2 End trajectory of manipulator. 

Table 1. Relationship between joint angle and time. 

 0.5s 1s 1.5s 2s 
Joint 1 angle 0 rad 0 rad 0 rad 0 rad 
Joint 2 angle 0.2 rad 0.7 rad 1.4 rad 1.6 rad 
Joint 3 angle 0 rad 0 rad 0 rad 0 rad 
Joint 4 angle -0.2 rad -0.75 rad -1.4 rad -1.6 rad 

Table 2. Relationship between joint speed and time. 

 0.5s 1s 1.5s 2s 
Joint 1 speed 0 rad/s 0 rad/s 0 rad/s 0 rad/s 
Joint 2 speed 1.5 rad/s 3.0 rad/s 1.5 rad/s 0 rad/s 
Joint 3 speed 0 rad/s 0 rad/s 0 rad/s 0 rad/s 
Joint 4 speed -1.5 rad/s -3 rad/s -1.5 rad/s 0 rad/s 
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Table 3. Joint acceleration as a function of time. 

 0.5s 1s 1.5s 2s 
Joint 1 acceleration 0 rad/s2 0 rad/s2 0 rad/s2 0 rad/s2 

Joint 2 acceleration 8.0 rad/s2 0 rad/s2 -8.0 rad/s2 0 rad/s2 

Joint 3 acceleration 0 rad/s2 0 rad/s2 0 rad/s2 0 rad/s2 

Joint 4 acceleration -8.0 rad/s2 0 rad/s2 8.0 rad/s2 0 rad/s2 

We have used MATLAB to build a simulation model of the robot arm and set up 
corresponding detection points to record the position, angle and acceleration of the joints of 
the arm in different states and plot them as images. The main ideas in MATLAB are as follows: 
firstly, we build a spatial model, establish a coordinate system, integrate the robot arm model 
into the coordinate system and limit the rotation angle of the robot arm by means of an 
algorithm, so that the data can be better detected. During the detection process, an error data 
reminder is also set up and an error message is output when the robot arm is switched off at 
a negative angle. In the simulation it is also necessary to substitute the positive and negative 
solution formulas for the kinematics of the robot arm so that the individual parameters of the 
joint can be solved. To ease of observation, we plot the obtained robot arm parameters versus 
time as an image to better aid the analysis. The following figure shows the simulation model 
of the manipulator in MATLAB and the image of the position of the end effector of the 
manipulator[9-11]. 

3.2 Data analysis 

By graphing the data obtained from the experiments, we can conclude that 
1. The velocity and time curves for joints 1 and 3 are approximately straight, the reason for the 

fluctuation is that the error caused by overshoot during velocity adjustment, after repeated 
experiments, this error does not affect the trajectory planning. 

2. The angular image of joint 2 is similar to a peak shape, rising at moment 0 but stabilising after 
moment 1.5, while joint 4 is a downhill shape, achieving a minimum and stabilising after moment 
1.5. There is a symmetrical relationship between joint 2 and joint 4 in terms of mechanical structure, 
which also makes the images of both symmetrical. There is also a symmetrical relationship 
between joint 2 and joint 4 in terms of the velocity image. 

3. In terms of acceleration the acceleration of joint 1.3 tends to be stable, but the acceleration of joint 
2.4 is sinusoidal and varies by approximately half a cycle. 

3.3 Method innovation 

We observe the swing model of the manipulator, and get that the complete range of motion 
of the whole manipulator is a hemisphere, and the manipulator can be retracted, so the range 
of motion is a solid sphere with the radius of the manipulator. However, the research on the 
whole manipulator is too large. We have locked the joints of the manipulator. We can regard 
the motion of each joint as the "circle drawing" motion in the air. Because we know the 
angular velocity of each joint, we can calculate the linear velocity of part of the manipulator 
through the relationship between angular velocity and linear velocity. At this time, we can 
know the length of the arc drawn by the manipulator, Because the length of each part of the 
manipulator is known, the radius of the sphere in which the manipulator is located can be 
calculated by using the known angle, and according to the circle of each joint, the radius of 
the sphere in which each segment of the manipulator is located can be obtained by the same 
operation mentioned above. At this time, there are three spheres with known radius. The 
coordinates of each manipulator joint can be obtained by establishing the coordinate system 
between the planes, and the coordinates of each manipulator fixed point can be obtained by 
cooperating with the angle calculation. Compared with the traditional kinematic trajectory, 
this method has less computation and more efficient, and can be more widely used. 
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4 Testing of the actual model 
We changed the robot arm several times in the simulation and wrote corresponding 
parameters into microcontroller, through comparative analysis, we can see the correctness of 
the trajectory, but there is still an little error, which may due to the existence of feedback 
adjustment overshoot factors, but in general, the trajectory planned by the above method can 
be better for completing the set task, the response speed in the process of hitting and the 
accuracy rate and the accuracy of the striking process are greatly improved.  

5 Summary 
In this paper, we establish a spatial coordinate system and use joint space trajectory planning 
to plan the trajectory of the robotic arm. Through this method, we can obtain a more accurate 
path, and with the control of the drive we can better complete the hitting of the table tennis 
ball. After many experiments, it is found that although it is very convenient to use our 
spherical coordinate solution method to plan the trajectory, there are some hidden dangers in 
the stability, which need to be improved in our follow-up research. 
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