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Abstract. An order reduction method for the flexible deformation 
response analysis of rigid flexible manipulators is proposed based on the 
approximate inertial manifold theory. This method allows a lower 
dimensional simplified model to be constructed from a subspace smaller 
than the entire state space. In this paper, truncated three-order modes are 
used to construct a first-order system of AIM. Compared with the 
traditional Galerkin method, the results show that the proposed method can 
reduce the degree of freedom of the system and improve the computational 
efficiency without obviously losing the precision of the solution, which is 
convenient for the subsequent vibration analysis and controller design of 
the system.  

1 Introduction  
Flexible manipulators have been widely used in high-tech fields. However, the dynamic 

characteristics of flexible manipulators are characterized by complex rigid-flexible coupling 
phenomenon. It is essentially a nonlinear distributed parameter system [1-2], with infinite 
degrees of freedom, which brings challenges to the control of flexible manipulators to 
achieve accurate positioning. Therefore, the model order reduction plays an indispensable 
role in the control of rigid flexible manipulator. For complex nonlinear dynamic systems, 
the commonly used dimensionally reducing methods are traditional Galerkin method, 
inertial manifold method and Proper Orthogonal Decomposition (POD) method, and central 
manifold method [3].In recent years, an important aspect of nonlinear dynamics has been the 
sensitive dependence of solutions on perturbations that may result from numerical errors 
and pattern truncation described above. A slight disturbance to the system can have a very 
important effect over a long period of time. On the other hand, for some infinite 
dimensional dissipative dynamic systems, asymptotically developed compact sets are called 
global attractors, which contain and capture nonlinear phenomena [4~5].The inertial manifold 
can be used to approximate the global attractor. In practical application, the concept of 
Approximate Inertial Manifold (AIMS) is introduced, and AIMS is defined as a finite 
dimensional Lipschitz manifold and a thin surrounding neighborhood that can be entered by 
any orbit in a finite time. In view of this, this paper adopts the approximate inertial 
manifold algorithm [6] (AIMS) to obtain the mapping relationship between the higher order 
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modes and the lower order modes, which can further reduce the order of the original system 
and lay a foundation for the design of the subsequent controller.  

2 Dynamic modeling of rigid flexible manipulator  
In this paper, Rigid flexible two link manipulator as the research object, the mechanical arm 
connected to the base of the rotating joint rigidity, flexible mechanical arm and robotic arm 
driven by motor shaft connection rigidity, ignore the vertical deformation of flexible 
manipulator, assuming that the flexible mechanical arm can be free in the plane of the bend, 
cross section plane after deformation and deformation after the vertical axis, as shown in 
figure 1. 

In Figure 1, the OXY coordinate system is an inertial coordinate system fixed to the 
base. o1x1y1 and o2x2y2 are local coordinate systems fixed to the rigid manipulator and the 
flexible manipulator base, respectively, which will rotate with the rotation of the 
manipulator. θ1 is the rotation angle of o1x1y1 relative to OXY, and θ2 is the rotation angle 
of o2x2y2 relative to o1x1y1.The length of the rigid and flexible manipulators is l1 and l2, 
respectively. According to Euler-Bernoulli beam theory, the deformation displacement of 
any point of the flexible manipulator is represented by a space-time function w(x,t). 

According to the results of reference [7], the vibration equation of the rigid-flexible 
coupling manipulator system can be obtained as follows: 

(4) (4)
2 2 2 2( , ) 2 ( , ) ( , ) ( , )w x t EI w x t EI w x t F x t                       (1) 

According to the basic principle of the hypothetical mode method, the flexible body is 
discretized, and the deformation w(x,t)can be expressed as: 
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Where, N is the order of modes, ( )i x is the i-th mode shapes, and ( )iq t is the 
corresponding mode coordinates. 

According to the boundary conditions of the cantilever beam, the modal shape function 
of the flexible arm can be expressed as: 

( ) cosh cos (sinh sin )i i i i i ix x x k x x                            (3) 

In the formula, 
i  is the eigenvalue, and i is the mode order. 

The solution of Equation (1) is projected onto the orthogonal basis of space, and the 
approximate solution of Galerkin process is obtained[8], i.e 

     4 42 2 2
2

2 4 4
1 1 12

2( ) ( ) ( ) ( , )
N N N

i i i
i

i

i

i
i

i

d dEIz q t EI q t q t f x t
dx dx

x x
x 

  

     
 

        (4) 

For the convenience of analysis, Sk is used here to represent the orthogonal projection in 
the Hilbert space H that will be covered by the first k eigenfunctions of A. SkH and GkH are 
called low and high mode subspaces respectively. In this way, Gk is projected onto an 
infinite dimensional space, so it has to be truncated. Define S=Skw and G=Gkw and apply 
them to Equation (4).A set of equations of the following form can be obtained[9]: 

.. . . . .
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Where, 
. . . .

1 ( , )A S G S G  ,
. . . .

2 ( , )A S G S G  is a nonlinear term. 

Clearly, the traditional Galerkin method was obtained by setting
.

G = 0 in Equation (6), 
ignoring the interaction between low and high modes.However, according to the 
approximate inertial manifold theory, an approximate inertial manifold[10] can be 
constructed as follows: 

. .
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That is ( )G S  , capturing high patterns with low patterns.Therefore, the solution of 
Equation (2) can be expressed as: 
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 According to the results of model validation in this reference [7], the infinite 

dimensional discrete system of the flexible manipulator can be approximated by the first 
three order models.From Equation 1 and Equation 7, we can get: 
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Finally, the obtained 2q  and 3q can be substituted into the following vibration 
displacement equation to obtain the first-order vibration model of the flexible manipulator: 

1 1 2 2 3 3( , ) ( ) ( ) ( )w x t x q x q x q                                        (12) 

3 Simulation analysis and experimental verification  

3.1 Simulation Analysis 
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The initial state of the rigid and flexible manipulators are assumed in a horizontal 
position; that is, 1 2 1 2 3 0.q q q       The joint drive torque is 1 2 0.412 /N m   . The size of 
the flexible manipulator is 300 20 15 .mm mm mm    The other physical parameters of the 
system are shown in Table 1.The calculation results of the traditional Galerkin method 
(TGM) and the proposed order reduction method based on approximate inertial manifold 
(AIM) are compared under different mode numbers.Calculate the time step and take the 
length as 21 10 s  , and calculate the time step altogether 32 10  .Fig. 2 shows the time 
history of terminal vibration displacement at x =0.3 in different modes.It can be seen from 
the figure that the end of the flexible arm goes through similar attenuating oscillations and 
finally converges to the same equilibrium point, and the system oscillates from the initial 
state 0w  and finally returns to the initial state.By comparing Fig. 1(a) and Fig. 1(b), it can 
be seen that the TGM method and AIM method are in good agreement with each other for 
different mode numbers, which shows that the proposed method can accurately describe the 
transient and steady-state behavior of the system with the accuracy of the traditional 
method. 

Table 1. System parameters of the rigid-flexible manipulator. 

Physical parameters Rigid manipulator Flexible manipulator 
Length/m L1=0.33 L1=0.30 
Moment of inertia/kg m2 J1=0.0812 J2=0.138 
Linear density/ kg m3  2 0.4865 

Elastic modulus/N m2  EI2=26.055 
Mass of the end/kg Mt=0.721 Mp=0.5 

 
(a) Modes are 5                                                     (b) Modes are 10 

Fig.1. Vibration displacement in different modes. 

3.2 Experimental Verification 

The initial state of the rigid and flexible manipulators are assumed in a horizontal position; 
that is,  The joint drive torque is . The size of the flexible manipulator is  The other physical 
parameters of the system are shown in Table 1. 

The calculation results of the traditional Galerkin method (TGM) and the proposed 
order reduction method based on approximate inertial manifold (AIM) are compared under 
different mode numbers.Calculate the time step and take the length as, and calculate the 
time step altogether .Fig. 2 shows the time history of terminal vibration displacement at 
x=0.3 in different modes.It can be seen from the figure that the end of the flexible arm goes 
through similar attenuating oscillations and finally converges to the same equilibrium point, 
and the system oscillates from the initial state   and finally returns to the initial state.By 
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3.2 Experimental Verification 

The initial state of the rigid and flexible manipulators are assumed in a horizontal position; 
that is,  The joint drive torque is . The size of the flexible manipulator is  The other physical 
parameters of the system are shown in Table 1. 

The calculation results of the traditional Galerkin method (TGM) and the proposed 
order reduction method based on approximate inertial manifold (AIM) are compared under 
different mode numbers.Calculate the time step and take the length as, and calculate the 
time step altogether .Fig. 2 shows the time history of terminal vibration displacement at 
x=0.3 in different modes.It can be seen from the figure that the end of the flexible arm goes 
through similar attenuating oscillations and finally converges to the same equilibrium point, 
and the system oscillates from the initial state   and finally returns to the initial state.By 

comparing Fig. 2(a) and Fig. 2(b), it can be seen that the TGM method and AIM method 
are in good agreement with each other for different mode numbers, which shows that the 
proposed method can accurately describe the transient and steady-state behavior of the 
system with the accuracy of the traditional method. 

In order to further verify the effectiveness of the dynamic model and dimension 
reduction method, developed an experimental platform for the coupled mechanical arm, 
sensor device is composed of two encoders and three strain gauge, for measuring the 
different position of the deformation, strain measurement using arms half bridge circuit 
connection, the measured voltage signal, through the strain amplifier instrument amplifier, 
again by the acquisition of high speed data acquisition instrument and A/D conversion, and 
through the computer to calculate the end point of the deformation, as shown in figure 2. 

 
Fig.2. Rigid-flexible manipulator experimental platform. 
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(a) Flexible joint angular displacement             (b) Deformation of flexible joint end 

Fig. 3. Comparison of simulation results with experimental results. 

Within 5 s by controlling the card to the stepper motor a voltage signal, 5 s retreat to 
voltage signal, through the motor encoder to get results of angular displacement is 
calculated from the voltage value of the strain gauge at the end of the deformation, the 
dimension reduction after comparing the results with the experimental results of the model, 
as shown in figure 4, from the picture can draw the following conclusion: 

(1) It can be seen from Fig. 3(a) that the simulation results of the angular 
displacement of the flexible joint are basically consistent with the experimental results, 
which proves that the spectral method and Galerkin truncation theory can accurately 
describe the dynamic characteristics of the flexible manipulator. 

(2) As can be seen from the figure 3 (b) the AIM approximation of the first-order 
system after the simulation results and the simulation results of the three order system, and 
within 5 s before two kinds of simulation result was consistent with the experimental results, 
voltage signal, In the fifth second, the end deformation of the flexible arm changes abruptly, 
finally in the structure under the action of damping gradually eliminate, proved with the 
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AIM to further reduce the effectiveness of the existing three order system, laid a theoretical 
foundation for the follow-up control study. 

4 Conclusion 
The rigid-flexible coupling manipulator equations based on Lagrange method are simplified 
by approximate inertial manifold method.Compared with the traditional Galerkin method, 
the proposed method takes into account the interaction between the lower and higher modes, 
reduces the computation time, and improves the distance between the original system and 
the simplified system in the long-term behavior.In addition, the simplified first order 
approximate inertial popular model lays a theoretical foundation for the design of 
subsequent controllers. 
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