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Abstract. In the Russian Federation, there is an urgent issue of grain 
storage and processing to be resolved through the reconstruction of old and 
construction of new storage facilities. Currently, the most common 
construction is represented by steel granaries, erected by rolling using 
prestressing in shells. The relevance of the problem of stability of the wall 
of a granary, taking into account the main factors, affecting the strength, 
requires further theoretical and experimental study. One of the most 
frequently used in solving stability problems is the energy criterion in the 
form of Ritz-Timoshenko, which makes it possible to determine critical 
stresses in the shells. In this case, the problem solution becomes simpler, it 
is easier to consider the effect of such factors as initial perfection, friction 
forces between the shell and the winding, as well as other features of the 
stability problem of a prestressed shell. This article analyses the granary 
wall stability against lateral external pressure of prestressed winding or 
bandages. For large tanks, prestressing is generated along the entire length 
of the shell, and in vertical cylindrical granaries, prestressing is generated 
on a part of the length (height) of the shell. 

1 Introduction 
The actual ratios of tank diameters and granaries and their heights show that their bodies 
are shells of medium length. 

The stability of cylindrical shells of medium length under the action of lateral uniform 
external pressure has been devoted to many works [1, 2, 3, 4, 5]. The analysis of these 
works shows that the effect of shell end grounding on its stability depends on the shell 
relative length. 

Figure 1 shows the numerical analysis results of the effect of various conditions of the 
shell fastening on its stability from lateral uniform pressure [5]. The following designations 
are used here: 
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whe
re: 

L  – shell length; 

 1t  – shell thickness; 
 R  – shell radius; 
   – Poisson's ratio; 
 *

крq  – determined by the formula of P. F. Papkovich [1]. 
 

 
Fig. 1. Effect of boundary conditions on the cylindrical shell stability against lateral external pressure. 

The shown curves correspond to the following variants of the boundary conditions at 
both shell ends: 
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whe
re: 

U  and V  – respectively, longitudinal and circumferential displacements of points 
of the shell middle surface; 

 xT  and 

xyS  
– longitudinal and shear forces in the shell. 

Parameter 0z  for vertical cylindrical tanks and granaries with a volume of 0.5 to 100 
thous. m3 is in the range from 20 to 80. The actual boundary conditions for fixing the body 
wall occupy an intermediate position between 2 and 8 variants of the boundary conditions 

2

E3S Web of Conferences 262, 01030 (2021)	 https://doi.org/10.1051/e3sconf/202126201030
ITEEA 2021



24

0
1

1L
Z

Rt
−

= ; 0 *
кр

кр

q
q

 = , (1) 

whe
re: 

L  – shell length; 

 1t  – shell thickness; 
 R  – shell radius; 
   – Poisson's ratio; 
 *

крq  – determined by the formula of P. F. Papkovich [1]. 
 

 
Fig. 1. Effect of boundary conditions on the cylindrical shell stability against lateral external pressure. 

The shown curves correspond to the following variants of the boundary conditions at 
both shell ends: 

1

2

3

4

5

6

7

8

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;
0, 0, 0, 0;
0, 0, 0, 0;

x

xy

x xy

x x

x xy

x x xy

wГ w U V
x
wГ w T V
x
wГ w U S
x
wГ w T S
x
wГ w U V
x

Г w M T V
Г w M U S
Г w M T S


= = = =




= = = =



= = = =



= = = =



= = = =


= = = =
= = = =
= = = =

, (2) 

whe
re: 

U  and V  – respectively, longitudinal and circumferential displacements of points 
of the shell middle surface; 

 xT  and 

xyS  
– longitudinal and shear forces in the shell. 

Parameter 0z  for vertical cylindrical tanks and granaries with a volume of 0.5 to 100 
thous. m3 is in the range from 20 to 80. The actual boundary conditions for fixing the body 
wall occupy an intermediate position between 2 and 8 variants of the boundary conditions 

given above. Thus, judging by the curves corresponding to variants 2 and 8 of the boundary 
conditions, we can say that for vertical cylindrical tanks and granaries with a volume of 5 to 
100 thous. m3, the presence of elastic grounding of the wall at the bottom practically does 
not affect the stability against lateral external pressure of the vacuum type. In other words, 
in calculating the stability of vertical cylindrical tanks or granaries of the indicated volume, 
it can be taken as a margin of stability that the body wall is hinged at the ends. 

In the case of a spiral-wound silo, the stability problem of a separate shell is solved, 
40L   cm long, parameter 0z  has a value 0 2 3z =  . 

According to Fig. 1, the presence of wall clamping in the folds should increase its 
resistance to lateral pressure. However, in this case, we also assume that the shell is hinged 
at the ends as a margin of stability. 

This article analyses the tank shell wall stability against lateral external pressure of a 
prestressed winding or bandages. For large tanks, prestressing is generated along the entire 
length of the shell, and in vertical cylindrical granaries, prestressing is generated on a part 
of the length (height) of the shell. 

The shell stability is lost in one of the sections with the most significant initial dents. In 
the remaining sections, as the compression force increased, there was a slight increase in 
dents, however, with a loss of stability in one of shell sections, deflections stop growing, 
since forces in the winding or bandages decrease. Thus, for the limiting state of stability 
loss, we take the moment of the formation of a dent in one of shell sections. 

2 Materials and Methods  
The problem was solved using the Ritz-Timoshenko energy method. The energy balance 
equation for the prestressed shell is written in the form: 
 

0 0обм тр c нU U U U U П U = + + + + − = , (3) 

whe
re: 

обмU
 

– potential energy of winding deformation during shell buckling; 

 трU
 

– potential energy of friction forces arising between the shell and the winding 
during their mutual displacement at the moment of buckling; 

 cU  – potential deformation energy of the shell middle surface; 
 нU  – potential energy of shell bending; 
 П  – potential of winding pressure forces on the shell; 
 0U  – potential energy of a prestressed shell before stability loss. 

The critical force in the winding крN  is defined as the minimum tension force in the 
winding 0N , when the potential energy of the shell-winding system before buckling will be 
equal to the potential energy of the system in a deformed state after buckling. 

To determine the parameters included in equation (3), it is necessary to set the shell 
deflection line. 

To approximate the shell deflections, an expression is adopted that sufficiently 
corresponds to the real buckling shape shown in Figure 2: 

cos sin xw f
L
= , (4) 

whe
re: 

f  – maximum amplitude of deflection at the dent center; 
02




= ; 
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 0  – the central angle defining the zone of winding separation from the shell during 
buckling. 

 

  
Fig. 2. Scheme of shell buckling along the entire winding length. 

Formula (4) is valid for 0 < 0  . 
With the indicated indentation scheme, the value f  can be determined through shell 

radius R and angle 0  by the formula: 

0 02,5 sinf R tq = , (5) 

where coefficient 2.5 is taken on the basis of experimentally obtained shape of the dent 
formed during stability loss and the analysis of the relationship between the value of shell 
deflections and delamination of the winding from the shell. 

Thus, taking into account formula (5), the variable deflection parameter is angle 0 . In 
other words, we assume that the shape of the initial wave formation is in "resonance" with 
the wave formation of the shell in the process of deformation, and that the only preset 
parameter is the maximum value of the initial dents 0A . This assumption somewhat 
enhances the effect of the initial inaccuracies, but it greatly simplifies the mathematical 
calculations. It is mentioned in works of L. G. Donell [5] and A. S. Volmir [6]. 

In real forms of initial dents, in contrast to those taken by formula (5), there is a 
buckling for the outer contour. The pressure from the prestressed winding in these areas 
with greater curvature is higher than in the areas with less curvature. Therefore, the real 
working conditions of the wall in the zone with stability loss can be considered similar to 
those assumed in this solution. That is, we assume that the shape of the initial indentations 
corresponds to formula (5) and that the pressure from the winding or bands is the same in 
all areas of their contact with the shell. 

As a result of shell buckling and dent formation, the winding circumference is less than 
that of the shell. As, the force in the winding is reduced. The relative winding deformation 

1 is determined from the condition of compatibility of shell and winding deformation: 

1 2 3
1 1

2
S S S

RL



+ +

= − , (6) 

whe
re: 

1 2 3,  ,  S S S  – sections of the reduced winding surface area  
after shell buckling (see Fig. 2), determined by the formulas: 

   
1 0

0

42 sin sin sin
2

L x RLS R dx
L
 

 
= = ; 
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After substituting them into formula (6), we have:  

1 2

1 2 sin
2


 
= − , (7) 

Taking into account the initial dent with an amplitude in the middle equal to 0f , the 
relative winding deformation with the shell stability loss will be less by an amount 0  that 
can be determined as 

0 2
0 0

1 2 sin
2


  
= − , (8) 

where: 0
0

0,625 R
f

 =  characterizes the initial dent width. 

Then the value of the winding relative deformation, taking into account formulas (7) 
and (8), will be determined by the formula: 

1 0 2
0 0

1 1 2 sin sin
2 2
   

   
 

= − = − − − 
 

. (9) 

It makes it possible to proceed to the determination of the potential energy of 
deformation of the prestressed winding as a result of its length reduction during shell 
buckling. After loss of stability, the force in the winding will decrease by an amount 

2 2 2E t B = . 

3 Results and Discussion 
In the presence of significant dents ( )12 5t  and with a decreasing load, the process of 
stability loss is not so dynamic and is closer to the inertialless process. In this case, the 
behavior of the system is determined by the diagram of equilibrium states, and at any stage 
of deformation its resistance is equal to the load. The foregoing allows us to assume that the 
deformation of the winding occurs at an average value between the force before buckling 
and the force after buckling, i.e. with force. 0N 0 2N B − 0 20,5N B −  Then the potential 
energy of winding deformation can be determined by the formula: 
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The energy of friction forces in this case is determined by the formula: 

( )
0
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
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 

  . (11) 

The resulting formula makes it possible to approximately consider the effect of friction 
forces on the shell stability against the action of prestressing, since it does not take into 
account initial dents along the shell perimeter, they reduce shell contact zone with the 
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winding, but also does not take into account the increase in radial pressure forces where the 
initial dents have a shape with slight bulging behind the outer contour, resulting in an 
increase in the shell curvature. Besides, a certain dynamism of the winding shift relative to 
the shell is not considered. Taking into account all these factors is a rather difficult task, 
difficult to accomplish within the framework of this article. 

Shell buckling, as a rule, is accompanied by not only bending stresses, but also 
additional stresses in the middle surface. Part of the external load potential upon stability 
loss of the shell is spent on increasing the bending energy, and the other part - on changing 
the deformation energy of the middle surface. The ratio depends on the shell size and 
configuration taken on buckling. For medium length shells, the deformation energy of the 
middle surface becomes commensurate with shell bending energy. To determine the 
deformation energy, it is necessary to determine the stress distribution function in the 
middle surface Ф . 

Since the shell buckling is accompanied by the dent formation with a large deflection 
amplitude, the problem should be solved in a geometrically nonlinear setting. To determine 
the stress distribution function in the middle surface, we will solve the fourth-order 
nonlinear differential equation of compatibility of deformations, used in the theory of 
flexible shells. 

As there are initial decays in real shells, we use the equation given in [7, 8, 9]: 

( ) ( )
( )

0 0

2
04

, , 2
1

1 1 1
2 w w w w

w w
Ф L L

E R x
 −  = − − −  

, (11) 

where operators ( ),w wL  and ( )0 0,w wL , being nonlinear terms of this differential equation, 

are determined by the formulas [10]: 

( )

22 2 2

, 2 2 22w w
w w wL

xRx R 

    
 = −      

, (12) 

( )0 0

22 2 2
0 0 0

, 2 2 22w w

w w w
L

xRx R 

    
 = −      

. (13) 

To solve the differential equation (11), we use the following boundary conditions at 

shell ends (with hinged fastening): at 0x =  and x L= , 0w =  and 
2

2 0w
x


=


. 

After integrating (11), taking into account formulas (12) and (13), we obtain the 
following expression for the stress distribution function in the shell middle surfaceФ : 

( )
2 2

2 2 0 0
1 0 12

1

2cos cos2 cos sin
22

f f Nx x xФ E f f E
L R L tR

  
   

− = − − + − 
 

, (14) 

where: 

2

22 2

2 2

L

L R




 

 
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 =

 
+ 

 

. 

Formula (14) is valid for 00    . 
The potential energy of deformation of the shell middle surface is determined 

taking into account a similar formula [4]: 
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As a result of integration and some transformations, we get: 
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The potential bending energy of the shell is determined taking into account the formula 
(12.95) [4]. However, in our problem, it is also necessary to take into account the bending 
stiffness of the winding in the annular direction. An approximate expression for the 
potential bending energy, taking into account the initial deflection, will have the form: 
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(17) 

whe
re: 

D  – a parameter that takes into account the stiffness of the shell for bending in the 
annular and longitudinal directions, as well as the winding stiffness for 
bending in the annular direction; 

 ( )
3

1 1
1 212 1

E tD


=
−

 – cylindrical shell stiffness; 

 
3

2 2
2 2 12

E tE I =  – reduced bending stiffness of the winding. 

It should be noted that formula (17) takes into account possible mutual slippage 
between the winding and the shell, therefore, the flexural stiffness for the shell and the 
winding is determined separately as for two unconnected elements. 

When the shell bulges in the dent zone, the radial pressure of the winding decreases, 
depending on the change in the shell curvature, to 0N R  zero. The larger the reduced 
winding thickness, the faster the tension force decreases, and, consequently, the radial 
pressure on the shell in this zone. 

The potential of the radial pressure forces of the shell winding can be determined by 
analogy with the formula (13.91) [4]:  

( )
0 0

'0 2
0 2 2

0 0 0 0

12 cos sin
2,5 2 2,5

L LN Bw xП R Pd dx d dx N B C
L
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−
= − = − = − −    , (18) 

where: 0 2N B
P

R
−

=  – radial pressure of the winding on the shell after buckling; 

 ( )'
2 0

1
1,25

C f f L


= − . 

It should be noted that the pressure P  can be considered equal to zero when, in the 
section where the shell buckling occurs, its curvature becomes zero, that is, when 
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(according to the diagram in Fig. 2 and formula (5)) the shell deflection becomes equal to 
2,5w . Assuming that the winding pressure on the shell during buckling of the shell varies 

from P  to zero according to a linear law, the average value of the pressure performing the 
work can be taken as 0,5P . Accordingly, in formula (18), the deflection w  is divided by a 
factor of 2.5, and the pressure by a factor of 2. 

The potential system energy before stability loss is determined by the expression: 
2 2

20 01 2
0 02 2

1 21 21 20 0 0 0

1 1L LN Nt tU R d dx R d dx RLN
B BE Et t

 

    += + =  
 

    . (19) 

Substituting (10), (11), (16), (17), (18) and (19) into the energy balance equation (3), we 
solve it with respect to the winding tension force 0N  [10]: 

( )' '
1 1 2 2

0 2
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0 / 25
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н

тр

U B C B RL C
N

RL C f RL

  

   


+ + +
=

 −+ −  
 

, 
(20) 

In this formula, the first term of the numerator takes into account the effect of bending 
of the shell and winding, the second - the effect of deformations of the middle surface, and 
the third - the effect of the winding stiffness on tension. The third term included in the 
denominator characterizes the influence of friction forces between the shell and the winding 
during their mutual displacement at the moment of buckling. 

4 Conclusions 
To obtain the value of the critical force, it is necessary to minimize the values 0N (20) by 
the parameters of the shell deflection, that is, to find the dimensions of the indentations that 
will correspond to the minimum force. Since in formula (5) the value f  is expressed in 
terms of  , the minimization 0N  will be carried out by  , characterizing the dent width.  

Minimization can be carried out by finding the derivative 0N    and equating it to 
zero, however, such an equation is transcendental, and its solution is a very difficult 
problem. Therefore, it seems easier to carry out minimization using numerical analysis. 

The value of the minimum critical effort according to the 0N  formula (20) is 
determined by varying the parameter   in the range from 1 to 60 with a step of 1. When 
determining the critical force, one can vary the flexibility of the shell, its relative length, the 
reduced thickness of the winding, the value of the initial deflections and the friction 
coefficient. Taking in the formula (20) 0трf =  we determine the value of critical efforts 
without taking into account the friction forces. 

Summing up, we can draw the following conclusions: the given solution allows you to 
determine the value of critical efforts (or stresses 1кр крN t = ) taking into account all the 
main factors [11]: 

⎯ shell length;  
⎯ shell flexibility;  
⎯ prestressing zone length;  
⎯ initial error value;  
⎯ reduced winding thickness;  
⎯ frictional forces between the shell and winding. 
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