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Abstract. Since the reliability of construction products, by definition, is a 

probability of failure-free operation, then to assess the correlation 

characteristics between the parameters of the reliability of construction 

products that are not observed at the same time, we will use the 

designations and terms used in the theory of probability and mathematical 

statistics. Existing statistical methods for assessing the conditional 

mathematical expectation applied to the construction product reliability are 

based on the possibility of simultaneous measurement of the value of 

random variables. Because of this, they get a set of extreme points in the 

plane of those variables, and then build a regression line estimates based 

on those parameters. Such methods are obviously unacceptable for the case 

when the quantities the mentioned random variables are cumulatively 

unobserved. The solution to this problem will allow us to find estimates 

(not statistical) of the regression line and a number of other characteristics 

associated with it for simultaneously unobservable random variables. The 

algorithm described in the current work illustrates an example of interest in 

the theory of reliability for finding the extrema of the averaged function 

over the given initial parameters of the construction product. 

1 Introduction 
Since the reliability of construction products, by definition, is a probability of failure-free 

operation, then to assess the correlation characteristics between the parameters of the 

reliability of  construction products that are not observed at the same time, we will use the 

designations and terms used in the theory of probability and mathematical statistics. By a 

‘construction product’ in the current work we will assume any given material, product or 

construction with a set of known parameters, obtained during the initial testing, that can be 

described using mathematical functions [1-5], applicable in reliability theory. 

Let us assume � and � be two dependent random variables with joint distribution set as �(�, �) = � (� < �, � < �) [4,6] 

It is assumed that the function K is unknown, and only the distributions �(�) = �(� <�) и �(�) = �(� < �) are given. Since it is impossible to recover the function K from the 

one-dimensional distributions F and G [5], the conditional mathematical expectation 

                                                 
*Corresponding author: chiganovanm.mgsu@gmail.com 

E3S Web of Conferences 263, 02011 (2021)

FORM-2021
https://doi.org/10.1051/e3sconf/202126302011

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



	
(�) =  ��
(�) =  ∫ 
(�)��(�/�) of the known function φ (y) is determined 

ambiguously by specifying F and G [5]. 

Here �(�/�) = �(� < �/� < �). 

In [5], lower and upper bounds for 	
(�) are found under the assumption that 	
(�) is a 

non-decreasing function in x [6-8]. In this work, the extremum of another function is 

determined �
(�, �, �) =  ∫ 	
(�) ��(�), which is obtained by averaging 	
(�) over the 

given distribution �(�). We denote L(F,G) as the set of all conditional distributions Q for 

which 	
(�) is a non-decreasing function in x, and ��(�, �) =  {�: ∫ �(�/�)��(�) =�(�)}
Assuming all stated above, the problem under consideration can be formulated as 

follows. It is required to find the absolute minimum �(�, �, �) and absolute maximum �(�, �, �) of the function �
(�, �, �) on the set �(�, �) ∈ �(�, �) ∩ ��(�, �) [3,5-8]

The solution to this problem is of interest in the theory of reliability [5,7], since it can be 

used to estimate the regression line between simultaneously unobservable random 

variables. Indeed, for 
(�) = �, the characteristic 	
(�) is a regression line between � and �. Existing statistical methods for assessing 	
 are based on the possibility of simultaneous 

measurement of the value of random variables � and � [1,3,6-13]. Because of this, they get 

a set of extreme points (�1, �1) (�2, �2)…. (�n, �n) in the plane (�, �), and then build a 

regression line estimates based on those parameters. Such methods are obviously 

unacceptable for the case when the quantities � and � are cumulatively unobserved. An 

example of such quantities are the moments of failure of a construction product in various 

modes [6-13]. 

The solution to this problem will allow us to find estimates (not statistical) of the 

regression line and a number of other characteristics associated with it for simultaneously 

unobservable random variables. The initial data for these estimates are the distributions F 

and G, and the monotonicity of the function 	
(�) (regression lines). The distributions of F 

and G can be determined from experimental data, and the monotonicity of 	
(�) often 

follows from physical considerations. 

2 Methods
In what follows, we restrict ourselves to considering the case when � takes on a finite 

number of values Ӿ = (��, ��, … , ��), and distribution �(�) is focused on multiple Ӿ [5,6-

8,10,11]. In the discrete case, it is convenient to write down the distribution Q (y/x) in the 

form of a column matrix � = (��, ��, … , ��)�, �� = �(�/��), and instead of the 

distributions F and G, introduce, respectively, the sets (��,��, … ,��) и (��, ��, … , ��),

where �� and �� are the magnitude of the jump at the point x, respectively, of the functions 

F and �. It is obvious, that �� > 0, �� ≥ 0, �� + ��+. . . +�� = 1, �� + ��+. . . +�� = 1.  

By using the following statements as a theoretical foundation we can further analyze the 

involvement of certain parameters in the reliability assessment process of the construction 

products. 

3 Results
The main result of the current work is contained in the following theorem. 

We introduce the concept of limit groups and limit distributions �∗ and �∗ accordingly.

Let us assume #� = �� ��⁄ . Using #� we can distinguish all groups. Let us agree to denote 

them as $�(�)
, i = 1, 2, …, %�, %� ≤ ', and α�(�) = ∑ 45(�5)��7∈89(;) , β�(�) = ∑ �5(�5)��7∈89(;) , j =
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1, 2, …, n, corresponding with samples @α�(�)A and @β�(�)A. Distribution functions will be 

denoted as �(�) and �(�) accordingly. 

Using #�(�) = β�(�) α�(�)B  let us distinguish all the groups $�(�)
, i = 1, 2, …, %�, %� ≤ %�.

Applying this procedure several times, we obtain the distribution functions for C ≤ '#�(D) ≥ #�(D) ≥. . . ≥ #E(D)
. 

In subsequent steps $�(D)
 will not change. We will name $�(D)

 the limit groups, and #�(D)
the limit probability ratio and denote them as $�∗ and #�∗ accordingly. Also, we name �(�)∗
and �(�)∗  as limit distribution functions, corresponding with probabilities α�∗ = ∑ α5(�5)�7∈89∗β�∗ = ∑ �5(�5)�7∈89∗ . 

Let us analyze the following theorem.  

The absolute minimum of the �
 function is reached on the distribution �∗(�/�) = �(�) F�∗(� + 0)�∗(� − 0) (1)

The proof follows from the statement that inf
∈G(H∗,I) �
(�∗, �∗, �) = inf
∈G(J,I) �
(�, �, �). 

Absolute maximum of the �
(�, �, �) function is found according to the same 

algorithm, assuming the selection of groups should be made according to the criterion #� ≤ #�. 

Let us briefly present an algorithm for finding the extrema of the function �
, which is 

as follows. The ratio of probabilities #(0) = ∞, i = 1, 2, …, n, #�L� = 0 is compiled. 

If for some numbers #MN� > #M ≤ #ML� ≤. . . ≤ #MLE > #MLEL�, then instead of using #(�) at the first step, a new probability ratio is introduced: 

#(�)(�) = O #(�), � ∈� (�M, �ML�, … , �MLE)  �M+. . . +�MLE
�M+. . . +�MLE , � ∈ (�M, �ML�, … , �MLE) (2)

If it turns out again that for some numbers #PN�(�) > #P(�) ≤ #PL�(�) ≤. . . ≤ #PLQ(�) > #PLQL�(�)
,

then instead of using #(�)(�) a new probability ratio is introduced: 

#(�)(�) = O #(�)(�), � ∈� (�P, �PL�, … , �PLQ)  �P+. . . +�PLQ
�P+. . . +�PLQ , � ∈ (�P, �PL�, … , �PLQ)

(

3)

and so on. This process continues until a non-returning function is obtained at some step #(�). 

It was proved [14] that thus γ (x) is uniquely determined. 

Using γ (x), the extremal distribution �∗(�/�), at which the absolute minimum of the 

function �
 is attained, can be written in the form: �∗(� �⁄ ) = R(�) F�(� + 0)�(� − 0) (4)

The following notations are used here: �(�) = S ��
T(�)UT(�)

(�)
R(�) = S ��

V(W)XY
(�)

R Z�
�

= (� − 4)N�R(� − �) is the interval-centered truncated distribution [��, ��],
where y1 and y2 are the solution of the system of inequalities: R(�� + 0) ≥ 4 (
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R(�� − 0) ≤ 4R(�� + 0) ≤ �R(�� − 0) ≥ �
5)

Function � Z�
�

 is uniquely determined regardless of the chosen solution of the system y1,

y2. 

The extremal distribution Q, at which the absolute maximum of the function R is 

achieved, is found in a similar way [14-16]. The only difference is that when constructing a 

sequence of functions #(�), … , #(�), it is necessary to change the signs of the inequalities to 

the opposite. 

The described algorithm for finding the extrema of the �
 function illustrates an 

example of interest in the theory of reliability [15-18].

4 Discussion
As an example of the algorithm application let us consider the following problem. 

Let construction products with a certain probability be tested in one of ten modes 

described by the parameter xi, i=1, 2, …, 10, �� ≤ ��L�
Let us suppose, that it is known that when the choice of the mode xi is carried out with 

the probability �i=0, 1; i=1, 2, …, 10, the failure rate � of construction products is constant 

in time and equal to 
�Т, where T = 1000 hours. The objective is to estimate the mean time R 

of no-failure operation of construction products, if they are tested in mode xi with 

probability βi, moreover, in our case �� = �� = �^ = �_ = �` = �a = 0,1; �b = ��c =0,05; �e = �g = 0,15 [17,19]. 

Note that the function �(�/��), which is the probability of failure of a construction 

product in time y in the mode xi, is assumed to be unknown, but from physical 

considerations the following inequality is considered to be satisfied: 	
(��) ≤ 	
(��L�), i=1, 

2, …, 9. In other words, the mode xi is more severe than xi+1. 

The solution to this problem is obviously reduced to finding the extremum of the 

function �
 = ∑ �� ∫ ���(�/��)hc�c�j� . In this example � and � are assumed to be, 

respectively, the operating mode of the construction product and its moment of failure.

Distributions F and � are defined by sets of probabilities ��  and ��, �(�) = �(η < y) =1 − lN�Y while � ≥ 0. 

According to the theorem, we compose the probability ratio #(х) and we get: #� = #� = #^ = #_ = #` = #a = 1, #b = #�c = 0,5, #e = #g = 1,5  

because #� = #� = #^ = #_ > #b; #` < #e > #a и #a < #g > #�c, then combining them into 

one group х1, х2, х3, х4, х6, х7, х8, х9, we get the following equation: 

#(�)(�) = m1, � = ��, … , �e1,25, � = �a, �g0,5, � = ��c
(

7)

Because #�(�) = #�(�) =. . . = #e(�) < #a(�) = #g(�) > #�c(�)
, we can combine all xi (but х10) 

into one group and construct the limiting probability ratio: 

#(�)(�) = m9,59 , � = ��, … , �g0,5, � = ��c
(8)

Then, using formula (1), we find the extreme distribution: 
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�(� �⁄ ) =
⎩⎪⎪
⎨
⎪⎪⎧

0, � < 01 − exp(−��)1 − exp(−��w) , 0 ≤ � < �w1, � ≥ �w ⎭⎬
⎫ � = ��, … , �g

0, � < �w1 − exp�−�(� − �w)� , � ≥ �w� � = ��c

(

9)

where �w is determined from the equation 1 − exp(−��w) = 0,9, i.e. �w = −� ∙ �'0,1. 

After substituting Q into the expression of the function �
, we obtain m=0,872, T=872 

hours. 

The absolute maximum M is calculated in the same way. 

Omitting intermediate reasoning, we note that in this case the set (��, ��, … , ��c) splits 

into three limiting groups: $� = (��, ��, … , �b); $� = (�`, �e); $^ = (�a, �g, ��c). So

М=1,09, Т=1090 hours. Thus, the average time �
 of no-failure operation of a construction 

product under a given test mode will be concluded between 872 and 1090 hours. 

This example shows the possibility of using this algorithm for a statistical assessment of 

the probable duration of a construction product according to the specified parameters. 

Let's consider the application of this algorithm as applied to another operating mode. 

Let the performance of a construction product be described by one technical parameter 

x [16,20], and as a result of acceptance and periodic tests of a certain batch of construction 

products, the corresponding distributions �(�) and �(�) are obtained. Moreover, it is 

known that �(�) = �($ < �) is a normal distribution with parameters μ0 and σ0, �(�) =�(� < �) = 1 − lN��, where Х is the initial value of the technical parameter, and � is the 

moment of failure of a construction product. 

It is required to find the minimum and maximum uptime of a new batch of construction 

products, in which the technical parameter is distributed according to the normal law with 

other parameters μ and σ. Applying the previously described algorithm to solve this 

problem, we obtain the values �(�, �, �) and �(�, �, �) for different values of % = � �c⁄  � = (�c − �) �c⁄ , which are presented in the table 1. 

 

Table 1. Absolute maximum �(�, �, �) and absolute minimum �(�, �, �) values 

a
k -0,5 -0,3 -0,1 0 0,1 0,3 0,75 

0,1 1,3576 

0,7331 

1,1210 

0,6578 

1,9559 

0,7793 

0,8245 

0,6962 

0,7403 

0,6195 

0,5924 

0,4842 

0,4703 

0,3702 

0,2 1,3630 

0,1905 

1,1174 

0,9761 

0,9043 

0,7892 

0,8098 

0,7058 

0,7227 

0,6287 

0,5778 

0,4932 

0,4705 

0,3794 

0,3 1,3778 

1,2085 

1,1177 

0,9934 

0,8912 

0,8057 

0,7908 

0,7216 

0,7241 

0,6440 

0,6118 

0,5070 

0,5257 

0,3919 

0,4 1,4086 

1,2306 

1,1267 

1,0167 

0,8944 

0,8282 

0,8232 

0,7437 

0,7600 

0,6660 

0,6566 

0,5266 

0,5821 

0,4101 

0,5 1,4571 

1,2521 

1,1512 

1,0433 

0,9233 

0,8560 

0,8549 

0,7709 

0,7951 

0,6925 

0,7018 

0,5514 

0,6412 

0,4337 

0,6 1,4920 

1,2687 

1,2035 

1,0694 

0,9520 

0,8862 

0,8855 

0,7965 

0,8299 

0,7236 

0,7483 

0,5821 

0,7064 

0,4624 

0,7 1,5349 

1,2819 

1,2758 

0,9292 

0,9808 

0,9164 

0,9164 

0,8343 

0,8640 

0,7563 

0,7998 

0,5514 

0,7805 

0,4902 

0,8 1,5684 

1,2904 

1,3502 

1,0694 

1,0104 

0,9451 

0,9458 

0,8655 

0,8988 

0,7236 

0,8601 

0,6516 

0,8798 

0,4624 
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5 Conclusions
The developed algorithm allows for a statistical assessment of the probable operation time 
of construction products and materials in cases when a number of initially specified 
parameters are known and their distribution function is determined for various modes. 

The data obtained in table 1 is applicable for engineering calculations, used for 
construction product reliability determination in cases with the known technical parameters 
of that product. 
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