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Abstract. The authors consider the determination of the eigenforms of a 

beam on elastic support parts. Elastic support parts made of rubber and 

laminated metal plates find a wide use for seismic isolation of bridges in 

earthquake-resistant construction. Determination of eigenforms of 

structures is the main stage when designing the buildings and structures for 

resisting the seismic impacts. The span structure of girder bridges is 

considered as a system of uniformly distributed load, the free vibrations of 

which are described by a homogeneous fourth-order partial differential 

equation. By solving the differential equation, formulas for determining the 

eigenforms of a beam on elastic support parts were obtained. The 

reliability of the obtained formulas is confirmed with the substitution of 

other boundary conditions of the beam. The formulas obtained are 

considered as a general case, and from them the special cases for different 

ways of fixing of beams can be obtained.  

1 Introduction 
Buildings and structures in seismic areas are designed and constructed considering seismic 

impacts with a certain intensity depending on the scale of construction sites. The bridge 

spans are also designed for vertical moving loads. 

Determination of the natural vibration modes of beams is the most important task when 

calculating spans for dynamic loads. Rubber bearings are widely used in the bridge 

construction [1]. When vertical and horizontal vibrations of the span are combined, the 

elastic support parts change shape and the natural vibration modes of beam, reducing the 

effects of dynamic loads on spans [2, 3, 4, 5, 6]. 

The rubber bearing parts are widely used in bridge construction and in this work the 

vertical transverse free vibrations along the y-axis of the span structure of a beam bridge on 

elastic supports are considered. 

Horizontal transverse vibrations along the z-axis is considered in the same way by 

replacing y with z. 

2 Research methods 
To determine the natural modes of vibrations of the beam, the natural vibrations of the 

beam are considered, which is described by a fourth-order partial differential equation. 
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The method of structural mechanics, special part of construction dynamics, was applied 

to obtain the deflection, the angle of rotation, the shear force, and the moment in the 

sections of the beam with free vibration. 

By placing the boundary conditions of the beam on the elastic support parts into these 

expressions, the natural modes of vibration are determined. 

Simplification of the cumbersome formulas associated with the Krylov functions were 

carried out by methods of mathematical analysis. 

In the analysis of the obtained formulas for the natural vibration modes on elastic 

support parts and in the transition from the general case to the special case, the function 

limit was used. 

3 Results and Discussion
The bridge framework is considered as a beam fixed on both ends. It is assumed that each 

bridge spans are independent to each other. We will consider a beam with elastic supports 

(Fig. 1). Normal vibrations of a beam with a uniformly distributed mass without attenuation 

are described by a fourth-order partial differential equation [7 – 12].

Fig. 1. Design of a beam on elastic supports

�� ���
��� + �̄�
�

��
 = 0, (1)

where EJ is the beam’s stiffness, �� is the mass of beam’s length unit.

The solution (1) can be represented in Fourier form (, �) = �() × �(�), which leads 

to two ordinary differential equations

���(�)
��� − �� ��
�� �() = 0;  �
Ф(�)

��
 + ��Ф(�) = 0. (2)

The solution of the first equation (2) will be 

��() = ��ℎ�� + �!ℎ�� + " !#� ��  + $ �%& �� , (3)
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where A, B, C, D are arbitrary constants, which are defined by boundary conditions on 

beam’s supports; �� = '�̄��
��
�

- characteristic number; �i is circular natural vibration 

frequency of a beam for i-th vibration mode.

To determine the vibration mode we will assess A, B, C, D through initial boundary 

conditions у0, �0, М0, Q0, with x = 0.

For this purpose, we differentiate the expression (3) to the third order and obtain the 

following. 

�� = �*-� + у123 Тх + у163
 7� + �1839 :�,
��< = �*�:� + �*< -� + �163 >� + �183
 7�,
��? = �*��7� + �*< �:� + �*?-� + �183 >�,
��@ = �*�A>� + �*< ��7� + �*?�:� + �*@-�.⎭⎪

⎬
⎪⎫

(4)

Sx, Tx, Ux, Vx in the expressions (4) represent the Krylov’s functions [9 – 13]. 

-� = FG3� HFIJ 3�
� , >� = JG3�HJ�K 3�

� ,
7� = FG3� LFIJ 3�

� , :� = JG3�LJ�K 3�
� .

It is known that ��? = − MN�� ; ��@ = − ON��. By placing these dependencies into expression 

(4), we have

�� = �*-� + P13 >� − M13
�� 7� − O139�� :�,
Q� = �*�:� + Q*-� − M13�� >� − O13
�� 7�,
R� = −�*����7� − Q*���:� + R*-� + O13 >�,
S� = −�*�A��>� − Q*����7� + R*�:� + S*-�.⎭⎪

⎬
⎪⎫

(5)

The expression (5) defines deflection, rotation angle, torque, and transverse force, 

respectively, within beam’s natural vibration. Using this expression, we determine the 
natural vibration modes of the beam installed on the elastic pillars. 

We apply the following boundary condition TU = VU ⋅ XU and YU = U , where VU is 

stiffness of the elastic support; XU , TU и YU are deflection, shear force and torque, 

respectively, at the origin of the coordinates.

We consider the first equation of expression (5) as followed [9 – 13] 

�� = �* Z-� + P13�1 >� − [139�� :�\. (6)

By applying boundary conditions for beam with elastic supports from third and fourth 

equations (5) we obtain the following, provided that Y] = U and T] = −VU ⋅ X^.
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−���*��7_ − ��Q*�:_ + �*"*� >_ = 0, 
−���*�A>_ − ��Q*��7_ + �*"*-_ = −�] ⋅ "*.

Solving these equations in terms of 
P13�1 and

[139��, and placing obtained values and values 

of functions Sx, Tx, Vx, S�, T�, V�, U� into expression (6) and after some conversion of 

expression, we obtain

�� = � `bc� Z!ℎ _��
] + !#� _��

] \ + b�� Z�ℎ _��
] + �%& _��

] \ + bA� Z�ℎ _��
] − �%& _��

] \e, (7)

where f = XUg[ij⋅kjL(ljHm)⋅oj] is constant value;

bc� = !ℎq� ⋅ �%& q� + �%& q� − �ℎq� − !#� q� ⋅ �ℎq�,b�� = !ℎq� − !#� q� − �ℎq� ⋅ �%& q�,bA� = !ℎq� ⋅ !#� q� − 1.
The normal vibration modes will be 

�() = bc� Z!ℎ _��
] + !#� _��

] \ + b�� Z�ℎ _��
] + �%& _��

] \ + bA� Z�ℎ _��
] − �%& _��

] \ (8)

Similarly, we can obtain the normal vibration modes for a beam with one rigid pillar 

and one elastic pillar. 

The vibration modes will be 

�() = bc� Z�ℎ _��
] + �%& _��

] \ + b�� Z�%& _��
] − �ℎ _��

] \, (9)

where bc� = �ℎq� + �%& q� , b�� = �ℎq� − �%& q�.
Table 1 illustrates formulas for determining the eigenforms of beams with various 

fixings, and Fig. 2 illustrates beams with different kinds of fixing at the ends. 
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Table 1. Normal vibration modes for beams with different installation methods 

No. Design Xt(u)

1
(!ℎq� − !#� q�) Z�ℎq� v + �%& q� v \ − 
− (�ℎq� − �%& q�)(!ℎq� v + !#� q� v )

2 �%&q� �
] ;    q� = w%

3
(�ℎq� − �%& q�) Z!ℎq� v − !#� q� v \ − 
− (!ℎq� − !#� q�)(�ℎq� v − �%& q� v )

4

bc� Z�ℎ q�v + �%& q�v \ + 
+b�� Z�%& q�v + �ℎ q�v \ + 
+bA� Z�%& q�v − �ℎ q�v \ 
bc� = !ℎq� ⋅ �%& q� + �%& q� − �ℎq� − − !#� q� ⋅ �ℎq�, b�� = !ℎq� − !#� q� − �ℎq� ⋅ �%& q� , bA� = !ℎq� ⋅ !#� q� − 1

From expression (8) we can get the normal vibration modes for a beam with rigid pillars 

where С0 �∞ and for a beam with no pillars where С0 = 0 (See Fig. 2).

For the first case, when С0 �∞ q = w% and �%& w % = 0, we get �() = �%& y⋅�⋅�
] , from 

expressions (8) and (9), which matches with normal vibration modes of a beam installed on 

rigid pillars (see table 1, position 2, and fig. 2a). For the second case, when С0=0, then!ℎq� ⋅ !#� q� − 1 = 0, and after certain conversions the expression (8) will be as following

�() = (!ℎq� − !#� q�) Z�ℎ _��
] + �%& _��

] \ − (�ℎq� − �%& q�) Z!ℎ _��
] + !#� _��

] \, (10)
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which matches with formula for determining the natural vibration modes of a beam with 

no pillars (see table 1, position 1, and fig. 2c).

(a)

(b)

(c)

Fig. 2. Design of beams with different pillars at the ends: (а) beam with swinging pillars;(b) beam 

with elastic pillars;(c) beam with no pillars (hanging)

The normal vibration modes for beams with different installation methods are illustrated 

in the fig. 3.

The obtained formulas for determining the natural vibration modes are used in 

calculating the span of a bridge with seismically insulating elastic supports for the effects of 

seismic and moving loads [14, 15].

The table 1 specifies the natural vibration modes for beams with different pillars at the 

ends. The positions 1, 2, 3 in the table are taken from the previous works [2, 9, 10, 11], and 

position 4 is proposed by the authors. Positions 1, 2 arise from position 4, when С0=0, 

С0=∞, respectively.

First mode Second mode

(a)

(b)

(c)

Fig. 3. Normal vibration modes for beams with different installation methods: (а) beam with rigid 

pillars;(b) beam with elastic pillars;(c) beam with no pillars

The proposed formulas (8) and (9) can be used for horizontal transverse vibration of 

beams. Then in the formulas take z� instead of ��.
In [16, 17], using the same boundary conditions, formulas were proposed to determine 

the frequencies of natural vibrations of beams on elastic support parts. 
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4 Conclusions 
The proposed formulas (8), (9) can be used to calculate the bridge spans for seismic and 
moving loads, and formula (8) is used to calculate intermediate spans, and formula (9) is 
used for side spans. 

Formula (8) can be used to determine the eigenmodes of the transverse vibration of the 
superstructure with seismic-insulating sliding bearing parts, replacing the sliding friction 
force of the bearing parts with the reduced stiffness of the elastic bearing parts from the 
condition that the work of the friction and elastic forces is equal. 

{тр ∙ ∆= "* ∙ ∆�
2 ;     �ℎ%!ℎ �%���   "* = 2{тр∆

here ∆ is the maximum horizontal sliding of the support parts. It is set depending on the 
seismic scale of the construction site [4]. 
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